Displaying all 2 publications

Abstract:
Sort:
  1. Jamal JA, Roberts DM, Udy AA, Mat-Nor MB, Mohamad-Nor FS, Wallis SC, et al.
    Int J Antimicrob Agents, 2015 Jul;46(1):39-44.
    PMID: 25881872 DOI: 10.1016/j.ijantimicag.2015.02.014
    Here we describe the pharmacokinetics of piperacillin administered by continuous infusion (CI) versus intermittent bolus (IB) dosing in critically ill patients receiving continuous venovenous haemofiltration (CVVH) and compare the frequency of pharmacodynamic/pharmacokinetic (PK/PD) target attainment with each dosing strategy. This was a prospective pharmacokinetic trial in 16 critically ill patients with severe sepsis or septic shock undergoing CVVH and randomised to receive either CI or IB administration of a standard daily dose of piperacillin/tazobactam (11.25g/day on Day 1 followed by 9g/day). Serial blood samples were measured on two occasions. Piperacillin pharmacokinetics were calculated using a non-compartmental approach. Blood concentrations were compared with established PK/PD targets. On occasion 1 (Days 1-3 of therapy), IB administration resulted in significantly higher piperacillin peak concentrations (169 vs. 89mg/L; P=0.002), whereas significantly higher steady-state concentrations were observed in CI patients (83 vs. 57mg/L; P=0.04). Total clearance and clearance not mediated by CVVH were significantly higher with CI administration [median (interquartile range), 1.0 (0.7-1.1) and 0.8 (0.6-1.0)mL/kg/min; P=0.001 and 0.001, respectively]. The estimated unbound piperacillin concentrations were four times above the target susceptibility breakpoint (16mg/L) for the entire dosing interval (100%fT>4xMIC) in 87.5% of patients receiving CI administration (sampling occasion 1), compared with 62.5% of IB patients achieving the desired target (50%fT>4xMIC). Compared with IB dosing, and despite similar CVVH settings, CI administration of piperacillin results in a pharmacokinetic profile that may optimise outcomes for less susceptible pathogens.
  2. Roberts JA, Joynt GM, Lee A, Choi G, Bellomo R, Kanji S, et al.
    Clin Infect Dis, 2021 04 26;72(8):1369-1378.
    PMID: 32150603 DOI: 10.1093/cid/ciaa224
    BACKGROUND: The optimal dosing of antibiotics in critically ill patients receiving renal replacement therapy (RRT) remains unclear. In this study, we describe the variability in RRT techniques and antibiotic dosing in critically ill patients receiving RRT and relate observed trough antibiotic concentrations to optimal targets.

    METHODS: We performed a prospective, observational, multinational, pharmacokinetic study in 29 intensive care units from 14 countries. We collected demographic, clinical, and RRT data. We measured trough antibiotic concentrations of meropenem, piperacillin-tazobactam, and vancomycin and related them to high- and low-target trough concentrations.

    RESULTS: We studied 381 patients and obtained 508 trough antibiotic concentrations. There was wide variability (4-8-fold) in antibiotic dosing regimens, RRT prescription, and estimated endogenous renal function. The overall median estimated total renal clearance (eTRCL) was 50 mL/minute (interquartile range [IQR], 35-65) and higher eTRCL was associated with lower trough concentrations for all antibiotics (P < .05). The median (IQR) trough concentration for meropenem was 12.1 mg/L (7.9-18.8), piperacillin was 78.6 mg/L (49.5-127.3), tazobactam was 9.5 mg/L (6.3-14.2), and vancomycin was 14.3 mg/L (11.6-21.8). Trough concentrations failed to meet optimal higher limits in 26%, 36%, and 72% and optimal lower limits in 4%, 4%, and 55% of patients for meropenem, piperacillin, and vancomycin, respectively.

    CONCLUSIONS: In critically ill patients treated with RRT, antibiotic dosing regimens, RRT prescription, and eTRCL varied markedly and resulted in highly variable antibiotic concentrations that failed to meet therapeutic targets in many patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links