Biodiesel is an attractive renewable energy source, which is suitable as a substitute to the non-renewablepetroleum diesel. However, it is plagued by its relatively bad cold flow behaviour. In this review, the factorsaffecting the cold flow of biodiesel, vis-à-vis the contradicting requirement of good cold flow and good ignitionproperties, are discussed. Fuel filter plugging, and crystallization of biodiesel are considered, together with thecold flow properties such as Pour Point (PP), Cloud Point (CP), Cold Filter Plugging Point (CFPP) and LowTemperature Filterability Test (LTFT). In addition, various methods used to improve the cold flow of biodieselare also presented, with a special emphasis laid on the effects of these methods in reducing the Cloud Point.Strategies to improve cold flow, and yet maintaining the good ignition quality of biodiesel, are also proposed.As far as the cold flow of biodiesel is concerned, desirable attributes of its esters are short, unsaturated andbranched carbon chains. However, these desirable attributes present opposing properties in terms of ignitionquality and oxidation stability. This is because esters with short, unsaturated and branched carbon chainspossess very good cold flow but poor ignition quality and oxidation stability. The target is therefore to producebiodiesel with good cold flow, sufficient ignition quality, and good oxidation stability. This target proves tobe quite difficult and is a major problem in biodiesel research. New frontiers in this research might be thedesign of the new cold flow improvers that is similar to those used in the petroleum diesel but is tailored forbiodiesel. Genetic modifications of the existing feedstock are also desirable but the food uses of this particularfeedstock should always be taken into consideration.
Palm oil-based Trimethylolpropane ester (TMP ester), with an iodine value of 66.4 g/100g, was epoxidizedto produce epoxidized TMP esters. In situ epoxidation method was used with peracetic acid to eliminatefatty acid double bonds in palm oil-based TMP ester and change it into oxirane ring. This was done toimprove the oxidative stability of trimethylolpropane ester which is a key concern limiting the usefulservice life in lubricants. The epoxidation was performed by reacting acetic acid as active oxygen carrierwith concentrated hydrogen peroxide as oxygen donor and a small amount of homogeneous catalyst(sulphuric acid). The effects of various parameters on the rate of epoxidation (such as the ratio of moleacetic acid to ethylenic unsaturation, hydrogen peroxide to ethylenic unsaturation and acetic acid moleratio, and amount of catalyst) were studied. The rate of oxidation was investigated by the percentageof oxirane oxygen analysis and iodine value.
In recent years, vegetable oil such as Palm Oil (PO) has been identified as a potential alternative dielectric insulating fluid for transformers. It is biodegradable, non-toxic and has high flash and fire points. In this paper, a study on the positive lightning impulse breakdown voltages of PO under non-uniform field is carried out. The testing was carried out using needle-plane electrodes configuration at gap distances of 25 mm and 50 mm. Rising voltage, 1 and 3 shots per step testing methods were used and 3 types of Refined Bleach and Deodorized Palm Oil (RBDPO) and Mineral Oil (MO) were examined. It was found there is no significant effect on the breakdown voltages of all samples. The breakdown voltages of all RBDPO at 50% probability are comparable with MO. At 1% probability and gap distance of 50 mm, the breakdown voltages of all RBDPO are lower than MO.
Research on the use of Jatropha curcas triglycerides as biodiesel feedstock has received worldwide attention due to its inherent characteristics. Unlike palm oil, J. curcas oil is not edible, and thus, it will not disturb the food supply. However, to the researchers' experiences with the synthesis of J. curcas, oil-based biodiesel has shown that the fuel characteristics depend largely on the type of alcohol used as the excess reactants. Transesterification reaction is chosen for this process with sodium methoxide as the catalyst. Comparison studies on the yield of esters using methanol and ethanol, as well as the impacts on the reaction rate are discussed. The effects of reaction time and molar ratio on the reaction conversion are also examined. The determination of reaction yield is based on the conversion of triglycerides into alkyl esters as the main product. The findings are described as follows: the highest percentage yield of product is attained at 96% for methanol as an excess reactant, and this is 90% when ethanol is used. The optimum conditions of parameters are achieved at 6:1 molar ratio of alcohol to triglycerides, 50 min of reaction time and reaction temperature of 65°C for methanol and 75°C for ethanol. The biodiesel properties of both ester fuels were determined according to the existing standards for biodiesel and compared to the characteristics of diesel fuel.