Several deep neural networks have been introduced for finger vein recognition over time, and these networks have demonstrated high levels of performance. However, most current state-of-the-art deep learning systems use networks with increasing layers and parameters, resulting in greater computational costs and complexity. This can make them impractical for real-time implementation, particularly on embedded hardware. To address these challenges, this article concentrates on developing a lightweight convolutional neural network (CNN) named FV-EffResNet for finger vein recognition, aiming to find a balance between network size, speed, and accuracy. The key improvement lies in the utilization of the proposed novel convolution block named the Efficient Residual (EffRes) block, crafted to facilitate efficient feature extraction while minimizing the parameter count. The block decomposes the convolution process, employing pointwise and depthwise convolutions with a specific rectangular dimension realized in two layers (n × 1) and (1 × m) for enhanced handling of finger vein data. The approach achieves computational efficiency through a combination of squeeze units, depthwise convolution, and a pooling strategy. The hidden layers of the network use the Swish activation function, which has been shown to enhance performance compared to conventional functions like ReLU or Leaky ReLU. Furthermore, the article adopts cyclical learning rate techniques to expedite the training process of the proposed network. The effectiveness of the proposed pipeline is demonstrated through comprehensive experiments conducted on four benchmark databases, namely FV-USM, SDUMLA, MMCBNU_600, and NUPT-FV. The experimental results reveal that the EffRes block has a remarkable impact on finger vein recognition. The proposed FV-EffResNet achieves state-of-the-art performance in both identification and verification settings, leveraging the benefits of being lightweight and incurring low computational costs.
In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).
This study concerns an attempt to establish a new method for predicting antimicrobial peptides (AMPs) which are important to the immune system. Recently, researchers are interested in designing alternative drugs based on AMPs because they have found that a large number of bacterial strains have become resistant to available antibiotics. However, researchers have encountered obstacles in the AMPs designing process as experiments to extract AMPs from protein sequences are costly and require a long set-up time. Therefore, a computational tool for AMPs prediction is needed to resolve this problem. In this study, an integrated algorithm is newly introduced to predict AMPs by integrating sequence alignment and support vector machine- (SVM-) LZ complexity pairwise algorithm. It was observed that, when all sequences in the training set are used, the sensitivity of the proposed algorithm is 95.28% in jackknife test and 87.59% in independent test, while the sensitivity obtained for jackknife test and independent test is 88.74% and 78.70%, respectively, when only the sequences that has less than 70% similarity are used. Applying the proposed algorithm may allow researchers to effectively predict AMPs from unknown protein peptide sequences with higher sensitivity.