Coatings with bioactive properties play a key role in the success of orthopaedic implants. Recent studies focused on composite coatings incorporating biocompatible elements that can increase the nucleation of hydroxyapatite (HA), the mineral component of bone, and have promising bioactive and biodegradable properties. Here we report a method of fabricating composite collagen, chitosan and copper-doped phosphate glass (PG) coatings for biomedical applications using electrophoretic deposition (EPD). The use of collagen and chitosan (CTS) allows for the co-deposition of PG particles at standard ambient temperature and pressure (1 kPa, 25 °C), and the addition of collagen led to the steric stabilization of PG in solution. The coating composition was varied by altering the collagen/CTS concentrations in the solutions, as well as depositing PG with 0, 5 and 10 mol% CuO dopant. A monolayer of collagen/CTS containing PG was obtained on stainless steel cathodes, showing that deposition of PG in conjunction with a polymer is feasible. The mass of the monolayer varied depending on the polymer (collagen, CTS and collagen/CTS) and combination of polymer + PG (collagen-PG, CTS-PG and collagen/CTS-PG), while the presence of copper led to agglomerates during deposition at higher concentrations. The deposition yield was studied at different time points and showed a profile typical of constant voltage deposition. Increasing the concentration of collagen in the PG solution allows for a higher deposition yield, while pure collagen solutions resulted in hydrogen gas evolution at the cathode. The ability to deposit polymer-PG coatings that can mimic native bone tissue allows for the potential to fabricate orthopaedic implants with tailored biological properties with lower risk of rejection from the host and exhibit increased bioactivity.
"Giant" core/shell quantum dots (g-QDs) are promising candidates for emerging optoelectronic technologies thanks to their facile structure/composition-tunable optoelectronic properties and outstanding photo-physical/chemical stability. Here, we synthesized a new type of CuInTeSe (CITS)/CdS g-QDs and regulated their optoelectronic properties by controlling the shell thickness. Through increasing the shell thickness, as-prepared g-QDs exhibited tunable red-shifted emission (from 900 to 1200 nm) and prolonged photoluminescence (PL) lifetimes (up to ∼14.0 μs), indicating a formed band structure showing efficient charge separation and transfer, which is further testified by theoretical calculations and ultrafast time-resolved transient absorption (TA) spectroscopy. These CITS/CdS g-QDs with various shell thicknesses can be employed to fabricate photoelectrochemical (PEC) cells, exhibiting improved photoresponse and stability as compared to the bare CITS QD-based devices. The results indicate that the rational design and engineering of g-QDs is very promising for future QD-based optoelectronic technologies.