METHODS: Dose measurement of a standard pear-shaped plan carried out in phantom to verify the MOSkin dose measurement accuracy. With MOSkin attached to the third diode, RP3 of the PTW 9112, both detectors were inserted into patients' rectum. The RP3 and MOSkin measured doses in 18 sessions as well as the maximum measured doses from PTW 9112, RPmax in 48 sessions were compared to the planned doses.
RESULTS: Percentage dose differences ΔD (%) in phantom study for two MOSkin found to be 2.22 ± 0.07% and 2.5 ± 0.07%. IVD of 18 sessions resulted in ΔD(%) of -16.3% to 14.9% with MOSkin and ΔD(%) of -35.7% to -2.1% with RP3. In 48 sessions, RPmax recorded ΔD(%) of -37.1% to 11.0%. MOSkin_measured doses were higher in 44.4% (8/18) sessions, while RP3_measured were lower than planned doses in all sessions. RPmax_measured were lower in 87.5% of applications (42/47).
CONCLUSIONS: The delivered doses proven to deviate from planned doses due to unavoidable shift between imaging and treatment as measured with MOSkin and PTW 9112 detectors. The integration of MOSkin on commercial PTW 9112 surface found to be feasible for rectal dose IVD during cervical HDR ICBT.
METHODS: Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures.
RESULTS: The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions.
CONCLUSIONS: The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose.
KEY POINTS: Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.