Displaying all 2 publications

Abstract:
Sort:
  1. Roy S, Tiang JJ, Roslee MB, Ahmed MT, Kouzani AZ, Mahmud MAP
    Sensors (Basel), 2022 Jan 06;22(2).
    PMID: 35062383 DOI: 10.3390/s22020424
    For low input radio frequency (RF) power from -35 to 5 dBm, a novel quad-band RF energy harvester (RFEH) with an improved impedance matching network (IMN) is proposed to overcome the poor conversion efficiency and limited RF power range of the ambient environment. In this research, an RF spectral survey was performed in the semi-urban region of Malaysia, and using these results, a multi-frequency highly sensitive RF energy harvester was designed to harvest energy from available frequency bands within the 0.8 GHz to 2.6 GHz frequency range. Firstly, a new IMN is implemented to improve the rectifying circuit's efficiency in ambient conditions. Secondly, a self-complementary log-periodic higher bandwidth antenna is proposed. Finally, the design and manufacture of the proposed RF harvester's prototype are carried out and tested to realize its output in the desired frequency bands. For an accumulative -15 dBm input RF power that is uniformly universal across the four radio frequency bands, the harvester's calculated dc rectification efficiency is about 35 percent and reaches 52 percent at -20 dBm. Measurement in an ambient RF setting shows that the proposed harvester is able to harvest dc energy at -20 dBm up to 0.678 V.
  2. Ullah Y, Roslee MB, Mitani SM, Khan SA, Jusoh MH
    Sensors (Basel), 2023 May 25;23(11).
    PMID: 37299808 DOI: 10.3390/s23115081
    Fifth-generation (5G) networks offer high-speed data transmission with low latency, increased base station volume, improved quality of service (QoS), and massive multiple-input-multiple-output (M-MIMO) channels compared to 4G long-term evolution (LTE) networks. However, the COVID-19 pandemic has disrupted the achievement of mobility and handover (HO) in 5G networks due to significant changes in intelligent devices and high-definition (HD) multimedia applications. Consequently, the current cellular network faces challenges in propagating high-capacity data with improved speed, QoS, latency, and efficient HO and mobility management. This comprehensive survey paper specifically focuses on HO and mobility management issues within 5G heterogeneous networks (HetNets). The paper thoroughly examines the existing literature and investigates key performance indicators (KPIs) and solutions for HO and mobility-related challenges while considering applied standards. Additionally, it evaluates the performance of current models in addressing HO and mobility management issues, taking into account factors such as energy efficiency, reliability, latency, and scalability. Finally, this paper identifies significant challenges associated with HO and mobility management in existing research models and provides detailed evaluations of their solutions along with recommendations for future research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links