Displaying all 4 publications

Abstract:
Sort:
  1. Harun H, Anuar AN, Ujang Z, Rosman NH, Othman I
    Water Sci Technol, 2014;69(11):2252-7.
    PMID: 24901619 DOI: 10.2166/wst.2014.156
    Aerobic granular sludge (AGS) has been applied to treat a broad range of industrial and municipal wastewater. AGS can be developed in a sequencing batch reactor (SBR) with alternating anaerobic-aerobic conditions. To provide anaerobic conditions, the mixed liquor is allowed to circulate in the reactor without air supply. The circulation flow rate of mixed liquor in anaerobic condition is the most important parameter of operation in the anaerobic-AGS processes. Therefore, this study investigates the effect of circulation rate on the performance of the SBR with AGS. Two identical reactors namely R1 and R2 were operated using fermented soy sauce wastewater at circulation rate of 14.4 and 36.0 l/h, respectively. During the anaerobic conditions, the wastewater was pumped out from the upper part of the reactor and circulated back into the bottom of the reactor for 230 min. A compact and dense AGS was observed in both reactors with a similar diameter of 2.0 mm in average, although different circulation rates were adopted. The best reactor performance was achieved in R2 with chemical oxygen demand removal rate of 89%, 90% total phosphorus removal, 79% ammonia removal, 10.1 g/l of mixed liquor suspended solids and a sludge volume index of 25 ml/g.
  2. Rosman NH, Nor Anuar A, Chelliapan S, Md Din MF, Ujang Z
    Bioresour Technol, 2014 Jun;161:155-61.
    PMID: 24704837 DOI: 10.1016/j.biortech.2014.03.047
    The influence of hydraulic retention time (HRT, 24, 12, and 6h) on the physical characteristics of granules and performance of a sequencing batch reactor (SBR) treating rubber wastewater was investigated. Results showed larger granular sludge formation at HRT of 6h with a mean size of 2.0±0.1mm, sludge volume index of 20.1mLg(-1), settling velocity of 61mh(-1), density of 78.2gL(-1) and integrity coefficient of 9.54. Scanning electron microscope analyses revealed different morphology of microorganisms and structural features of granules when operated at various HRT. The results also demonstrated that up to 98.4% COD reduction was achieved when the reactor was operated at low HRT (6h). Around 92.7% and 89.5% removal efficiency was noted for ammonia and total nitrogen in the granular SBR system during the treatment of rubber wastewater.
  3. Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H, Chelliapan S
    Bioresour Technol, 2013 Apr;133:630-4.
    PMID: 23453799 DOI: 10.1016/j.biortech.2013.01.149
    The present study demonstrated that aerobic granular sludge is capable of treating livestock wastewater from a cattle farm in a sequencing batch reactor (SBR) without the presence of support material. A lab scale SBR was operated for 80 d using 4 h cycle time with an organic loading rate (OLR) of 9 kg COD m(-3) d(-1). Results showed that the aerobic granules were growing from 0.1 to 4.1 mm towards the end of the experimental period. The sludge volume index (SVI) was 42 ml g(-1) while the biomass concentration in the reactor grew up to 10.3 g L(-1) represent excellent biomass separation and good settling ability of the granules. During this period, maximum COD, TN and TP removal efficiencies (74%, 73% and 70%, respectively) were observed in the SBR system, confirming high microbial activity in the SBR system.
  4. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links