Displaying all 3 publications

Abstract:
Sort:
  1. Rosmi MS, Yusop MZ, Kalita G, Yaakob Y, Takahashi C, Tanemura M
    Sci Rep, 2014;4:7563.
    PMID: 25523645 DOI: 10.1038/srep07563
    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp(2) hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction.
  2. Mohamed MA, W Salleh WN, Jaafar J, Mohd Hir ZA, Rosmi MS, Abd Mutalib M, et al.
    Carbohydr Polym, 2016 08 01;146:166-73.
    PMID: 27112862 DOI: 10.1016/j.carbpol.2016.03.050
    Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation.
  3. Vishwakarma R, Rosmi MS, Takahashi K, Wakamatsu Y, Yaakob Y, Araby MI, et al.
    Sci Rep, 2017 03 02;7:43756.
    PMID: 28251997 DOI: 10.1038/srep43756
    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links