Displaying all 2 publications

Abstract:
Sort:
  1. Saadon A, Abdullah J, Mohd Yassin I, Muhammad NS, Ariffin J
    Heliyon, 2024 Feb 29;10(4):e26252.
    PMID: 38404813 DOI: 10.1016/j.heliyon.2024.e26252
    This study proposed a novel application of Neural Network AutoRegressive eXogenous (NNARX) model in predicting nonlinear behaviour of riverbank erosion rates which is difficult to be achieved with good accuracy using conventional approaches. This model can estimate complex river bank erosion rates with flow variations. The NNARX model analysed to a set of primary data, 60% (203 data for training) and 40% (135 data for testing), which were collected from Sg. Bernam, Malaysia. A set of nondimensional parameters, known as functional relationship, used as an input to the NNARX model has been established using the method of repeating variables. The One-Step-Ahead time series prediction plots are used to assess the accuracy of all developed models. Model no. 6 (5 independent variables with 10 hidden layers) gives good predictive performance, supported by the graphical analysis with discrepancy ratio of 94% and 90% for training and testing datasets. This finding is consistent with model accuracy result, where Model no. 6 achieved R2 of 0.932 and 0.788 for training and testing datasets, respectively. Result shows that bank erosion is maximized when the near-bank velocity between 0.2 and 0.5 m/s, and the riverbank erosion is between 1.5 and 1.8 m/year. On the other hand, higher velocities ranging from 0.8 to 1.3 m/s induces erosion at a rate between 0.1 and 0.4 m/year. Sensitivity analysis shows that the highest accuracy of 91% is given by the ratio of shear velocity to near-bank velocity followed by boundary shear stress to near-bank velocity ratio (88.5%) and critical shear stress to near-bank velocity ratio (88.2%). It is concluded that the developed model has accurately predicted non-linear behaviour of riverbank erosion rates with flow variations. The study's findings provide valuable insights in advanced simulations and predictions of channel migration, encompassing both lateral and vertical movements, the repercussions on the adjacent river corridor, assessing the extent of land degradation and in formulating plans for effective riverbank protection and management measures.
  2. Amin Megat Ali MS, Zabidi A, Md Tahir N, Mohd Yassin I, Eskandari F, Saadon A, et al.
    Heliyon, 2024 Feb 29;10(4):e26438.
    PMID: 38420485 DOI: 10.1016/j.heliyon.2024.e26438
    Poverty, an intricate global challenge influenced by economic, political, and social elements, is characterized by a deficiency in crucial resources, necessitating collective efforts towards its mitigation as embodied in the United Nations' Sustainable Development Goals. The Gini coefficient is a statistical instrument used by nations to measure income inequality, economic status, and social disparity, as escalated income inequality often parallels high poverty rates. Despite its standard annual computation, impeded by logistical hurdles and the gradual transformation of income inequality, we suggest that short-term forecasting of the Gini coefficient could offer instantaneous comprehension of shifts in income inequality during swift transitions, such as variances due to seasonal employment patterns in the expanding gig economy. System Identification (SI), a methodology utilized in domains like engineering and mathematical modeling to construct or refine dynamic system models from captured data, relies significantly on the Nonlinear Auto-Regressive (NAR) model due to its reliability and capability of integrating nonlinear functions, complemented by contemporary machine learning strategies and computational algorithms to approximate complex system dynamics to address these limitations. In this study, we introduce a NAR Multi-Layer Perceptron (MLP) approach for brief term estimation of the Gini coefficient. Several parameters were tested to discover the optimal model for Malaysia's Gini coefficient within 1987-2015, namely the output lag space, hidden units, and initial random seeds. The One-Step-Ahead (OSA), residual correlation, and residual histograms were used to test the validity of the model. The results demonstrate the model's efficacy over a 28-year period with superior model fit (MSE: 1.14 × 10-7) and uncorrelated residuals, thereby substantiating the model's validity and usefulness for predicting short-term variations in much smaller time steps compared to traditional manual approaches.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links