Displaying all 4 publications

Abstract:
Sort:
  1. Ghadiry M, Ismail R, Saeidmanesh M, Khaledian M, Manaf AA
    Nanoscale Res Lett, 2014;9(1):604.
    PMID: 25404874 DOI: 10.1186/1556-276X-9-604
    Combination of high-mean free path and scaling ability makes graphene nanoribbon (GNR) attractive for application of field-effect transistors and subject of intense research. Here, we study its behaviour at high bias near and after electrical breakdown. Theoretical modelling, Monte Carlo simulation, and experimental approaches are used to calculate net generation rate, ionization coefficient, current, and finally breakdown voltage (BV). It is seen that a typical GNR field-effect transistor's (GNRFET) breakdown voltage is in the range of 0.5 to 3 V for different channel lengths, and compared with silicon similar counterparts, it is less. Furthermore, the likely mechanism of breakdown is studied.
  2. Kiani MJ, Harun FK, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M
    Nanoscale Res Lett, 2014;9(1):371.
    PMID: 25114659 DOI: 10.1186/1556-276X-9-371
    Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.
  3. Rahmani M, Ahmadi MT, Abadi HK, Saeidmanesh M, Akbari E, Ismail R
    Nanoscale Res Lett, 2013;8(1):55.
    PMID: 23363692 DOI: 10.1186/1556-276X-8-55
    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.
  4. Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Saeidmanesh M, Khaledian M, et al.
    Beilstein J Nanotechnol, 2014;5:726-34.
    PMID: 24991510 DOI: 10.3762/bjnano.5.85
    Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs), holds great potential for applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs) and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET) based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding current-voltage (I-V) characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links