Displaying all 2 publications

Abstract:
Sort:
  1. Salim YS, Sharon A, Vigneswari S, Mohamad Ibrahim MN, Amirul AA
    Appl Biochem Biotechnol, 2012 May;167(2):314-26.
    PMID: 22544728 DOI: 10.1007/s12010-012-9688-6
    This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23 mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9 mol% 3HV-co-19 mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6% w/w week(-1)) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38 mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30% EFB displayed the highest rate of degradation both in the lake (25.6% w/w week(-1)) and soil (15.6% w/w week(-1)) environment.
  2. Salim YS, Abdullah AA, Nasri CS, Ibrahim MN
    Bioresour Technol, 2011 Feb;102(3):3626-8.
    PMID: 21115240 DOI: 10.1016/j.biortech.2010.11.020
    Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links