Displaying all 2 publications

Abstract:
Sort:
  1. Kamarudin NH, Jalil AA, Triwahyono S, Artika V, Salleh NF, Karim AH, et al.
    J Colloid Interface Sci, 2014 May 1;421:6-13.
    PMID: 24594025 DOI: 10.1016/j.jcis.2014.01.034
    Mesoporous silica nanoparticles (MSNs) were synthesized with variable microwave power in the range of 100-450 W, and the resulting enhancement of MSN crystal growth was evaluated for the adsorption and release of ibuprofen. X-ray diffraction (XRD) revealed that the MSN prepared under the highest microwave power (MSN450) produced the most crystallized and prominent mesoporous structure. Enhancement of the crystal growth improved the hexagonal order and range of silica, which led to greater surface area, pore width and pore volume. MSN450 exhibited higher ibuprofen adsorption (98.3 mg/g), followed by MSN300(81.3 mg/g) and MSN100(74.1 mg/g), confirming that more crystallized MSN demonstrated higher adsorptivity toward ibuprofen. Significantly, MSN450 also contained more hydroxyl groups that provided more adsorption sites. In addition, MSN450 exhibited comparable ibuprofen adsorption with conventionally synthesized MSN, indicating the potential of microwave treatment in the synthesis of related porous materials. In vitro drug release was also investigated with simulated biological fluids and the kinetics was studied under different pH conditions. MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. This was due to the wide pore diameter and longer range of silica order of the MSN450. Ibuprofen release from MSN450 at pH 5 and 7 was found to obey a zero-order kinetic model, while release at pH 2 followed the Kosmeyer-Peppas model.
  2. Mohd Fairuz FS, Md Muslim NZ, Wan Abdullah WN, Mohd Shohaimi NA, Abdullah NH, Ab Halim AZ, et al.
    Langmuir, 2024 Sep 11.
    PMID: 39261293 DOI: 10.1021/acs.langmuir.4c02309
    The contamination of water sources with the heavy metal contaminant arsenic (As) causes substantial risks to humans, animals, and other living organisms. Therefore, the introduction of methods for the removal of As is important. The present study aimed to investigate the adsorption model and mechanism of As removal utilizing natural soil adsorbents. The batch adsorption technique was used to analyze the impacts of various parameters such as contact time, initial As concentration, pH, and temperature. Adsorption mechanisms were studied through adsorption kinetic, isotherm, and thermodynamic models. The batch adsorption study findings indicate that the optimal conditions for maximum As removal were achieved by application of 2.2 g of adsorbents in 50 μg/L of As solution for 60 min of contact time at a pH of 5.5 ± 0.5 and a temperature of 40 °C. The highest removal efficiency was achieved when red soil was employed as the adsorbent. The kinetic, isotherm, and thermodynamic models revealed that As adsorption was a chemisorptive, nonspontaneous, and endothermic process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links