Displaying all 2 publications

Abstract:
Sort:
  1. Chien Bong CP, Alam MNHZ, Samsudin SA, Jamaluddin J, Adrus N, Mohd Yusof AH, et al.
    J Environ Manage, 2021 Nov 15;298:113461.
    PMID: 34435568 DOI: 10.1016/j.jenvman.2021.113461
    Polyhydroxyalkanoate (PHA) is a type of polyesters produced in the form of accumulated intracellular granules by many microorganisms. It is viewed as an environmentally friendly bioproduct due to its biodegradability and biocompatibility. The production of the PHA using oil substrates such as waste oil and plant oil, has gained considerable attention due to the high product yield and lower substrate cost. Nevertheless, the PHA fermentation using oil substrate is complicated due to the heterogenous fatty acid composition, varied bio-accessibility and possible inhibitory effect on the bacterial culture. This review presents the current state-of-the-art of PHA production from oil-based substrates. This paper firstly discusses the technical details, such as the choice of bacteria strain and fermentation conditions, characteristic of the oil substrate as well as the PHA composition and application. Finally, the paper discusses the challenges and prospects for up-scaling towards a cleaner and effective bioprocess. From the literature review, depending on the cell culture and the type of PHA produced, the oil platform can have a PHA yield of 0.2-0.8 g PHA/g oil substrate, with PHA content mostly from 40 to 90% of the cell dry weight. There is an on-going search for more effective oil-utilising PHA producers and lower cost substrate for effective PHA production. The final application of the PHA polymer influences the treatment needed during downstream processing and its economic performance. PHA with different compositions exhibits varied decomposition behaviour under different conditions, requiring further insight towards its management towards a sustainable circular economy.
  2. Ilyas RA, Zuhri MYM, Norrrahim MNF, Misenan MSM, Jenol MA, Samsudin SA, et al.
    Polymers (Basel), 2022 Jan 03;14(1).
    PMID: 35012203 DOI: 10.3390/polym14010182
    Recent developments within the topic of biomaterials has taken hold of researchers due to the mounting concern of current environmental pollution as well as scarcity resources. Amongst all compatible biomaterials, polycaprolactone (PCL) is deemed to be a great potential biomaterial, especially to the tissue engineering sector, due to its advantages, including its biocompatibility and low bioactivity exhibition. The commercialization of PCL is deemed as infant technology despite of all its advantages. This contributed to the disadvantages of PCL, including expensive, toxic, and complex. Therefore, the shift towards the utilization of PCL as an alternative biomaterial in the development of biocomposites has been exponentially increased in recent years. PCL-based biocomposites are unique and versatile technology equipped with several importance features. In addition, the understanding on the properties of PCL and its blend is vital as it is influenced by the application of biocomposites. The superior characteristics of PCL-based green and hybrid biocomposites has expanded their applications, such as in the biomedical field, as well as in tissue engineering and medical implants. Thus, this review is aimed to critically discuss the characteristics of PCL-based biocomposites, which cover each mechanical and thermal properties and their importance towards several applications. The emergence of nanomaterials as reinforcement agent in PCL-based biocomposites was also a tackled issue within this review. On the whole, recent developments of PCL as a potential biomaterial in recent applications is reviewed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links