Displaying all 3 publications

Abstract:
Sort:
  1. Saqib NU, Adnan R, Shah I
    Environ Sci Pollut Res Int, 2016 Aug;23(16):15941-51.
    PMID: 27335012 DOI: 10.1007/s11356-016-6984-7
    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.
  2. Rahim M, Mas Haris MRH, Saqib NU
    Biophys Rev, 2020 Oct;12(5):1223-1231.
    PMID: 32901426 DOI: 10.1007/s12551-020-00750-0
    In recent years, controlled drug delivery has become an important area of research. Nano-biocomposites can fulfil the necessary requirements of a targeted drug delivery device. This review describes use of polymeric nano-biocomposites in controlled drug delivery devices. Selection of suitable biopolymer and methods of preparation are discussed.
  3. Saqib NU, Shah I, Adnan R, Zaman F, Imam SS, Jan HA, et al.
    Photochem Photobiol Sci, 2024 Feb;23(2):245-256.
    PMID: 38105417 DOI: 10.1007/s43630-023-00513-2
    In photocatalytic removal of organic pollutants, adsorption and degradation are two important processes that take place. Various instrumental techniques and trapping experiments have been used to identify the reactive species and the mechanism of photodegradation. The present work focuses on investigating the mechanism of photo-induced degradation from the comparative characterization of fresh and used samples, isotherm models, competitive adsorption, and desorption studies of pure and Ag+-modified TiO2 NPs. The comparative characterizations of fresh and used NPs were carried out with FT-IR, EDX, and XRF analyses after methylene blue (MB) degradation. The Ag+ doped TiO2 used in this study was fabricated using simple impregnation technique. The prepared NPs were characterized using techniques including XPS, XRD, SEM/EDX, XRF, UV-DRS, and pH point-zero charge analyses (pHPZC). The Ag+-modified TiO2 NPs showed improved efficiency compared to pure TiO2 NPs using normal compact fluorescent light (CFL). The Langmuir and Freundlich isotherm models were applied to test the adsorption behavior on the surface photocatalysts. The investigational data finest fitted to the Langmuir isotherms model compared to Freundlich model, suggesting the homogeneous monolayer adsorption followed by degradations. The competitive removal of MB in the presence of a photo-generated electrons trapper (Cd2+) was enhanced almost 3-folds (115 mg/L) compared to the removal from a single MB solution (40 mg/L). The characterization of the used samples as well as adsorption in the dark and negligible desorption of used samples support the involvement of the proposed photo-induced degradation mechanism.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links