Extraction process are one of the critical units in palm oil milling process which dictates its efficiency. In this study, hot compressed water extraction (HCWE) is utilized for the crude palm oil (CPO) extraction. With regards to CPO quality, the extracted CPO using HCWE was analysed based on overall composition, triacylglycerol (TAG) composition and fatty acid profile composition. This is to evaluate the possible product degradation during the process. From the results, the CPO extracted using HCWE process contain low FFA of 0.15±0.01% and low DAG of 2.145% which reflect to higher quality of CPO. This CPO also show the equal mixture of saturated and unsaturated fatty acid composition at 50.63% and 49.93% respectively, within the CPO composition range in the literature. No significant changing of the fatty acid composition is observed between CPO extracted using HCWE and commercial CPO indicated that no possible undesired reaction during the extraction process. HCWE is a promising method for screw press system replacement, but the economic analysis is essential to evaluate its prospective.
A low cost, with high performance, reduced graphene oxide (RGO) Ultra-wide Band (UWB) array sensor is presented to be applied with a technique of confocal radar-based microwave imaging to recognize a tumor in a human brain. RGO is used to form its patches on a Taconic substrate. The sensor functioned in a range of 1.2 to 10.8 GHz under UWB frequency. The sensor demonstrates high gain of 5.2 to 14.5 dB, with the small size of 90 mm × 45 mm2, which can be easily integrated into microwave imaging systems and allow the best functionality. Moreover, the novel UWB RGO array sensor is established as a detector with a phantom of the human head. The layers' structure represents liquid-imitating tissues that consist of skin, fat, skull, and brain. The sensor will scan nine different points to cover the whole one-sided head phantom to obtain equally distributed reflected signals under two different situations, namely the existence and absence of the tumor. In order to accurately detect the tumor by producing sharper and clearer microwave image, the Matrix Laboratory software is used to improve the microwave imaging algorithm (delay and sum) including summing the imaging algorithm and recording the scattering parameters. The existence of a tumor will produce images with an error that is lower than 2 cm.