Dengue is a major public health problem worldwide. Although several drug candidates have been evaluated in randomized controlled trials, none has been effective and at present, early recognition of severe dengue and timely supportive care are used to reduce mortality. While the first dengue vaccine was recently licensed, and several other candidates are in late stage clinical trials, future decisions regarding widespread deployment of vaccines and/or therapeutics will require evidence of product safety, efficacy and effectiveness. Standard, quantifiable clinical endpoints are needed to ensure reproducibility and comparability of research findings. To address this need, we established a working group of dengue researchers and public health specialists to develop standardized endpoints and work towards consensus opinion on those endpoints. After discussion at two working group meetings and presentations at international conferences, a Delphi methodology-based query was used to finalize and operationalize the clinical endpoints. Participants were asked to select the best endpoints from proposed definitions or offer revised/new definitions, and to indicate whether contributing items should be designated as optional or required. After the third round of inquiry, 70% or greater agreement was reached on moderate and severe plasma leakage, moderate and severe bleeding, acute hepatitis and acute liver failure, and moderate and severe neurologic disease. There was less agreement regarding moderate and severe thrombocytopenia and moderate and severe myocarditis. Notably, 68% of participants agreed that a 50,000 to 20,000 mm3 platelet range be used to define moderate thrombocytopenia; however, they remained divided on whether a rapid decreasing trend or one platelet count should be case defining. While at least 70% agreement was reached on most endpoints, the process identified areas for further evaluation and standardization within the context of ongoing clinical studies. These endpoints can be used to harmonize data collection and improve comparability between dengue clinical trials.
We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line-associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN.