This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.
The study aims to evaluate the effects of pineapples waste on the growth, texture quality and flesh colour of Nile tilapia (Oreochromis niloticus) fingerlings. Fingerlings were fed with four different levels of pineapple waste diets throughout 56 days, which contain a control group (Diet 1) and experimental diets that formulated with 10% (Diet 2), 20% (Diet 3) and 30% (Diet 4) of pineapple waste. The experimental diet was formulated with rice bran, fish meal, soybean meal, vitamin and mineral premix, vegetable oil and binder to attain 32% dietary protein. The results revealed that the formulated fish diet with pineapple waste given the optimum weight gain, weight gain percentage, specific growth rate than the control group, where Diet 4 has shown the highest value (p
Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.
A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.