Displaying all 3 publications

Abstract:
Sort:
  1. Leung AK, Hon KL, Leong KF, Sergi CM
    Hong Kong Med J, 2018 Oct;24(5):512-520.
    PMID: 30245481 DOI: 10.12809/hkmj187470
    Measles (rubeola) is a highly contagious vaccine-preventable disease caused by the measles virus-a virus of the Paramyxoviridae family. The illness typically begins with fever, runny nose, cough, and pathognomonic enanthem (Koplik spots) followed by a characteristic erythematous, maculopapular rash. The rash classically begins on the face and becomes more confluent as it spreads cephalocaudally. Laboratory confirmation of measles virus infection can be based on a positive serological test for measles-specific immunoglobulin M antibody, a four-fold or greater increase in measles-specific immunoglobulin G between acute and convalescent sera, isolation of measles virus in culture, or detection of measles virus ribonucleic acid by reverse transcriptase-polymerase chain reaction. Complications occur in 10% to 40% of patients, and treatment is mainly symptomatic. Bacterial superinfections, if present, should be properly treated with antibiotics. To eradicate measles, universal childhood immunisation and vaccination of all susceptible individuals with measles vaccine would be ideal. In developed countries, routine immunisation with measles-containing vaccine is recommended, with the first and second doses at ages 12 to 15 months and 4 to 6 years, respectively. The World Health Organization recommends that the first and second doses of measles-containing vaccine be given at ages 9 months and 15 to 18 months, respectively, in countries with high rates of measles transmission.
  2. Amirzade-Iranaq MT, Omidi M, Bakhsheshi-Rad HR, Saberi A, Abazari S, Teymouri N, et al.
    Materials (Basel), 2023 Feb 25;16(5).
    PMID: 36903033 DOI: 10.3390/ma16051919
    This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices.
  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links