Prevalence, distribution and antibiotic resistance of Arcobacter spp. were investigated in cattle, goats, floor and treated water samples in this study. The prevalence of Arcobacter in adult and young was recorded as 8/110 (7.27%) and 4/83 (4.81%), respectively, which showed insignificant difference (P = 0.3503) in detection rates between adult and young cattle. A total of 33.33% of the floor samples and 11.11% of the treated water samples analysed were determined as positive for Arcobacter. Among the species isolated, over all, A. butzleri (45%) was the most frequently detected species, followed by A. skirrowii (5%). A. butzleri was isolated from adult cattle, floor and water samples at the rates of 75.0%, 33.4% and 50%, respectively. Co-colonization of species was not uncommon, and 50% of the samples were carrying more than one Arcobacter species. Only 12.5% sample from cattle (adult) was detected positive for only A. skirrowii. All samples from young animals, floor and water contained mixed isolates. None of the samples from goat farm was found to be carrying Arcobacter species. On profiling of antimicrobial resistance patterns, it was found that only one A. butzleri isolate (3.7%) was sensitive to all nine antibiotics tested. A. butzleri was found highly resistant to ampicillin (55.6%), followed by cefotaxime (33.4%) and ciprofloxacin (33.4%). Overall, 20% of the isolates showed multidrug resistance (resistant ≥4 antibiotics). Gentamicin and enrofloxacin can be used as drugs of choice for the treatment for Arcobacter infections.
A total of 106 beef samples which consisted of local (n = 59) and imported (n = 47) beef and 180 milk samples from cows (n = 86) and goats (n = 94) were collected from Selangor, Malaysia. Overall, 30.2% (32 of 106) of beef samples were found positive for Arcobacter species. Imported beef was significantly more contaminated (46.80%) than local beef (16.9%). Arcobacter butzleri was the species isolated most frequently from imported (81.8%) and local (60%) beef, followed by Arcobacter cryaerophilus in local (33.3%) and imported (18.2%) beef samples. Only one local beef sample (10%) yielded Arcobacter skirrowii. Arcobacter species were detected from cow's milk (5.8%), with A. butzleri as the dominant species (60%), followed by A. cryaerophilus (40%), whereas none of the goat's milk samples were found positive for Arcobacter. This is the first report of the detection of Arcobacter in milk and beef in Malaysia.
Arcobacter is getting more attention due to its detection from wide host-range and foods of animal origin. The objective of this study was to determine the prevalence of Arcobacter spp. in various sources at farm level and beef retailed in markets in Malaysia and to assess the genetic relatedness among them. A total of 273 samples from dairy cattle including cattle (n=120), floor (n=30), water (n=18) and milk (n=105) as well as 148 beef samples collected from retail markets were studied. The overall prevalence of Arcobacter in various sources was 15% (63/421). However, source-wise detection rate of Arcobacter spp. was recorded as 26.66% (8/30) in floor, 26.3% (39/148) in beef, 11.11% (2/18) in water, 7.6% (8/105) in milk and 6.66% (8/120) in cattle. Arcobacter butzleri was the frequently isolated species however, a total of 75%, 66.7%, 53.8%, 50% and 12.5%% samples from floor, milk, beef, water and cattle, respectively, were carrying more than one species simultaneously. One (12.5%) cattle and beef sample (2.5%) found to be carrying one Arcobacter spp., A. skirrowii, only. Typing of Arcobacter isolates was done though pulsed field gel electrophoresis (PFGE) after digested with Eag1 restriction endonuclease (RE). Digestion of genomic DNA of Arcobacter from various sources yielded 12 major clusters (≥ 50% similarity) which included 29 different band patterns. A number of closely related A. butzleri isolates were found from beef samples which indicate cross contamination of common type of Arcobacter. Fecal shedding of Arcobacter by healthy animals can contaminate water and milk which may act as source of infection in humans.
The aim of this study was to assess the bactericidal efficacy of antimicrobial photodynamic dynamic therapy (aPDT) as an adjunct to scaling and root planing (SRP) against periodontal pathogens.
Here we report the synthesis of Sm-doped Na0.5Bi4.5Ti4O15 (Na0.5Sm0.5Bi4Ti4O15) lead-free ceramics via a conventional solid-state technique. Investigations of Na0.5Bi4.5Ti4O15 (NBT) and Na0.5Sm0.5Bi4.5Ti4O15 (NSBT) ceramics were demonstrated in detail to understand the composition-based structure-property of Aurivillius compounds and related functional material. Dielectric properties for frequency and temperature in a wide range were analyzed. The conduction activation energy values of NSBT ceramics are obtained to be 1.40 eV, whereas, the NBT ceramics get the value to be 1.31 eV. At higher temperatures, the conduction activation energy value of NSBT ceramics is 1.32 eV for both frequencies of 100 Hz and 1 kHz, whereas, for NBT compounds, the calculated value is 1.27 eV for both frequencies. The simulation performed on the impedance data for capacitive and resistance elements shows well-fitting curves which indicates a single relaxation behavior in the material. Similarly, the AC-conductivity data were analyzed which gives different conduction processes and relaxation activation energies in the NSBT ceramics.