Displaying all 2 publications

Abstract:
Sort:
  1. Shahid MA, Alam MM, Su'ud MM
    Sensors (Basel), 2023 Feb 09;23(4).
    PMID: 36850563 DOI: 10.3390/s23041965
    Cloud computing (CC) benefits and opportunities are among the fastest growing technologies in the computer industry. Cloud computing's challenges include resource allocation, security, quality of service, availability, privacy, data management, performance compatibility, and fault tolerance. Fault tolerance (FT) refers to a system's ability to continue performing its intended task in the presence of defects. Fault-tolerance challenges include heterogeneity and a lack of standards, the need for automation, cloud downtime reliability, consideration for recovery point objects, recovery time objects, and cloud workload. The proposed research includes machine learning (ML) algorithms such as naïve Bayes (NB), library support vector machine (LibSVM), multinomial logistic regression (MLR), sequential minimal optimization (SMO), K-nearest neighbor (KNN), and random forest (RF) as well as a fault-tolerance method known as delta-checkpointing to achieve higher accuracy, lesser fault prediction error, and reliability. Furthermore, the secondary data were collected from the homonymous, experimental high-performance computing (HPC) system at the Swiss Federal Institute of Technology (ETH), Zurich, and the primary data were generated using virtual machines (VMs) to select the best machine learning classifier. In this article, the secondary and primary data were divided into two split ratios of 80/20 and 70/30, respectively, and cross-validation (5-fold) was used to identify more accuracy and less prediction of faults in terms of true, false, repair, and failure of virtual machines. Secondary data results show that naïve Bayes performed exceptionally well on CPU-Mem mono and multi blocks, and sequential minimal optimization performed very well on HDD mono and multi blocks in terms of accuracy and fault prediction. In the case of greater accuracy and less fault prediction, primary data results revealed that random forest performed very well in terms of accuracy and fault prediction but not with good time complexity. Sequential minimal optimization has good time complexity with minor differences in random forest accuracy and fault prediction. We decided to modify sequential minimal optimization. Finally, the modified sequential minimal optimization (MSMO) algorithm with the fault-tolerance delta-checkpointing (D-CP) method is proposed to improve accuracy, fault prediction error, and reliability in cloud computing.
  2. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, et al.
    Environ Res, 2021 Jan;192:110294.
    PMID: 33022215 DOI: 10.1016/j.envres.2020.110294
    The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 μm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links