Displaying all 2 publications

Abstract:
Sort:
  1. Shahril Anuar Bahari, Kamrie Kamlon, Masitah Abu Kassim
    MyJurnal
    In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
  2. Shahril Anuar Bahari, Mohd Khairi Yahya, Masitah Abu Kassim, Khairul Safuan Muhammad, Rahimi Baharom
    MyJurnal
    The electrical resistivity and flexural strength of plastic composites reinforced with pineapple leaf particles (PCPLP) is presented. PCPLP were produced using different plastic materials; Polyethylene (PE) and Polypropylene (PP), and different plastic pineapple leaf particle ratios; 50:50 and 70:30. The PCPLP were tested and evaluated with respect to electrical resistivity and flexural strength according to ASTM D257 and D790, respectively. The results indicate that PCPLP made from PP exhibits better electrical resistance than PE, which may be attributed to the better frequency insulation behaviour ofPP. PCPLP using the higher ratio of 70:30 also exhibited better electrical resistance than the lower 50:50 ratio. Cellulose materials inherently influence the electrical resistance of plastic composites, due to their natural propensity to absorb moisture. The PCPLP produced using a ratio of 50:50 for both PP and PE composites exhibited better MOE results than the 70:30 composites, however the converse is true with respect to the MOR. MOE of PCPLP was increased with increasing pineapple leaf particles content due to the greater matrix stiffness of this natural particle with respect to plastic matrix. However, high percentage offiller particles in the matrix (70:30 ratio) has reduced the toughness in the composite structure due to the lost ofphysical contact between high accumulated particles.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links