SUBJECTS AND METHODS: Eleven normal-hearing adults participated. The ABR test was repeated twice in the same clinical session and conducted again in another session. The ABR was acquired using both the click and LS CE-Chirp® stimuli at 4 presentation levels (80, 60, 40, and 20 dBnHL). Only the right ear was tested using the ipsilateral electrode montage. The reliability of the ABR findings (amplitudes and latencies) to the click and LS CE-Chirp® stimuli within the same clinical session and between the two clinical sessions was calculated using an intra-class correlation coefficient analysis (ICC).
RESULTS: The results showed a significant correlation of the ABR findings (amplitude and latencies) to both stimuli within the same session and between the clinical sessions. The ICC values ranged from moderate to excellent.
CONCLUSIONS: The ABR results from both the LS CE-Chirp® and click stimuli were consistent and reliable over the two clinical sessions suggesting that both stimuli can be used for neurological diagnoses with the same reliability.
METHODS: This study involved forward and back translation method. The translated questionnaire was then pretested and piloted among 10 parents and 50 participants, respectively. The procedure was repeated using the same questionnaire to evaluate the test-retest reliability.
RESULTS: The ERC-Malay (ERC-M) has excellent qualitative and quantitative measurements in both item-level content validation index (I-CVI) and scale-level content validation index (S-CVI). In addition, the ERC-M demonstrated good internal consistency from Cronbach's alpha and test-retest reliability based on the Intraclass Correlation Coefficient (ICC) in all domains.
CONCLUSION: ERC-M can potentially be used as a tool to evaluate emotion for the population with emotional dysregulation issue, such as autism spectrum disorder.
SUBJECTS AND PURPOSE: Nineteen adults with normal hearing participated. The ABRs were acquired using click and LS chirp stimuli using three stimulus polarities (rarefaction, condensation, and alternating) at 80 dBnHL. The ABRs were tested only on the right ear at a stimulus rate of 33.33 Hz. The ABR test was stopped when the recording reached the residual noise level of 0.04 µV. The ABRs amplitudes, absolute latencies, inter-peak latencies (IPLs), and the recorded number of averages were statistically compared among ABRs at different stimulus polarities and stimuli combinations.
RESULTS: Rarefaction polarity had the largest ABR amplitudes and SNRs compared with other stimulus polarities in both stimuli. There were marginal differences in the absolute latencies and IPLs among stimulus polarities. No significant difference in the number of averages required to reach the stopping criteria was found.
CONCLUSIONS: Stimulus polarities have a significant influence on the ABR to LS chirp. Rarefaction polarity is recommended for clinical use because of its larger ABR peak I, III, and V amplitudes than those of the other stimulus polarities.