Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which activated immune cells attack the CNS and cause inflammation and demyelination. While the etiology of MS is still largely unknown, the interaction between hormones and the immune system plays a role in disease progression, but the mechanisms by which this occurs are incompletely understood. Several in vitro and in vivo experimental, but also clinical studies, have addressed the possible role of the endocrine system in susceptibility and severity of autoimmune diseases. Although there are several demyelinating models, experimental autoimmune encephalomyelitis (EAE) is the oldest and most commonly used model for MS in laboratory animals which enables researchers to translate their findings from EAE into human. Evidences imply that there is great heterogeneity in the susceptibility to the induction, the method of induction, and the response to various immunological or pharmacological interventions, which led to conflicting results on the role of specific hormones in the EAE model. In this review, we address the role of endocrine system in EAE model to provide a comprehensive view and a better understanding of the interactions between the endocrine and the immune systems in various models of EAE, to open up a ground for further detailed studies in this field by considering and comparing the results and models used in previous studies.
Repairing significant bone defects remains a critical challenge, raising the clinical demand to design novel bone biomaterials that incorporate osteogenic and angiogenic properties to support the regeneration of vascularized bone. Bioactive glass scaffolds can stimulate angiogenesis and osteogenesis. In addition, natural or synthetic polymers exhibit structural similarity with extracellular matrix (ECM) components and have superior biocompatibility and biodegradability. Thus, there is a need to prepare composite scaffolds of hydrogels for vascularized bone, which incorporate to improve the mechanical properties and bioactivity of natural polymers. In addition, those composites' 3-dimensional (3D) form offer regenerative benefits such as direct doping of the scaffold with ions. This review presents a comprehensive discussion of composite scaffolds incorporated with BaG, focusing on their effects on osteo-inductivity and angiogenic properties. Moreover, the adaptation of the ion-doped hydrogel composite scaffold into a 3D scaffold for the generation of vascularized bone tissue is exposed. Finally, we highlight the challenges and future of manufacturing such biomaterials.