Displaying all 13 publications

  1. Kamarudin K, Mamduh SM, Shakaff AY, Zakaria A
    Sensors (Basel), 2014;14(12):23365-87.
    PMID: 25490595 DOI: 10.3390/s141223365
    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
  2. Zakaria NZ, Masnan MJ, Zakaria A, Shakaff AY
    Sensors (Basel), 2014;14(7):12233-55.
    PMID: 25010697 DOI: 10.3390/s140712233
    Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers' performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied.
  3. Hidayat W, Shakaff AY, Ahmad MN, Adom AH
    Sensors (Basel), 2010;10(5):4675-85.
    PMID: 22399899 DOI: 10.3390/s100504675
    Presently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (e-nose) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples.
  4. Subari N, Mohamad Saleh J, Md Shakaff AY, Zakaria A
    Sensors (Basel), 2012;12(10):14022-40.
    PMID: 23202033 DOI: 10.3390/s121014022
    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
  5. Andrew AM, Zakaria A, Mad Saad S, Md Shakaff AY
    Sensors (Basel), 2016;16(1).
    PMID: 26797617 DOI: 10.3390/s16010031
    In this study, an early fire detection algorithm has been proposed based on low cost array sensing system, utilising off- the shelf gas sensors, dust particles and ambient sensors such as temperature and humidity sensor. The odour or "smellprint" emanated from various fire sources and building construction materials at early stage are measured. For this purpose, odour profile data from five common fire sources and three common building construction materials were used to develop the classification model. Normalised feature extractions of the smell print data were performed before subjected to prediction classifier. These features represent the odour signals in the time domain. The obtained features undergo the proposed multi-stage feature selection technique and lastly, further reduced by Principal Component Analysis (PCA), a dimension reduction technique. The hybrid PCA-PNN based approach has been applied on different datasets from in-house developed system and the portable electronic nose unit. Experimental classification results show that the dimension reduction process performed by PCA has improved the classification accuracy and provided high reliability, regardless of ambient temperature and humidity variation, baseline sensor drift, the different gas concentration level and exposure towards different heating temperature range.
  6. Ibrahim MF, Ahmad Sa'ad FS, Zakaria A, Md Shakaff AY
    Sensors (Basel), 2016 Oct 27;16(11).
    PMID: 27801799
    The conventional method of grading Harumanis mango is time-consuming, costly and affected by human bias. In this research, an in-line system was developed to classify Harumanis mango using computer vision. The system was able to identify the irregularity of mango shape and its estimated mass. A group of images of mangoes of different size and shape was used as database set. Some important features such as length, height, centroid and parameter were extracted from each image. Fourier descriptor and size-shape parameters were used to describe the mango shape while the disk method was used to estimate the mass of the mango. Four features have been selected by stepwise discriminant analysis which was effective in sorting regular and misshapen mango. The volume from water displacement method was compared with the volume estimated by image processing using paired t-test and Bland-Altman method. The result between both measurements was not significantly different (P > 0.05). The average correct classification for shape classification was 98% for a training set composed of 180 mangoes. The data was validated with another testing set consist of 140 mangoes which have the success rate of 92%. The same set was used for evaluating the performance of mass estimation. The average success rate of the classification for grading based on its mass was 94%. The results indicate that the in-line sorting system using machine vision has a great potential in automatic fruit sorting according to its shape and mass.
  7. Zakaria SM, Visvanathan R, Kamarudin K, Yeon AS, Md Shakaff AY, Zakaria A, et al.
    Sensors (Basel), 2015;15(12):30894-912.
    PMID: 26690175 DOI: 10.3390/s151229834
    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.
  8. Saad SM, Andrew AM, Shakaff AY, Saad AR, Kamarudin AM, Zakaria A
    Sensors (Basel), 2015;15(5):11665-84.
    PMID: 26007724 DOI: 10.3390/s150511665
    Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN--a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room's conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.
  9. Chang CC, Saad B, Surif M, Ahmad MN, Md Shakaff AY
    Sensors (Basel), 2008 Jun 01;8(6):3665-3677.
    PMID: 27879900
    A disposable screen-printed e-tongue based on sensor array and pattern recognition that is suitable for the assessment of water quality in fish tanks is described. The characteristics of sensors fabricated using two kinds of sensing materials, namely (i) lipids (referred to as Type 1), and (ii) alternative electroactive materials comprising liquid ion-exchangers and macrocyclic compounds (Type 2) were evaluated for their performance stability, sensitivity and reproducibility. The Type 2 e-tongue was found to have better sensing performance in terms of sensitivity and reproducibility and was thus used for application studies. By using a pattern recognition tool i.e. principal component analysis (PCA), the e-tongue was able to discriminate the changes in the water quality in tilapia and catfish tanks monitored over eight days. E-tongues coupled with partial least squares (PLS) was used for the quantitative analysis of nitrate and ammonium ions in catfish tank water and good agreement were found with the ion-chromatography method (relative error, ±1.04- 4.10 %).
  10. Zakaria A, Shakaff AY, Masnan MJ, Saad FS, Adom AH, Ahmad MN, et al.
    Sensors (Basel), 2012;12(5):6023-48.
    PMID: 22778629 DOI: 10.3390/s120506023
    In recent years, there have been a number of reported studies on the use of non-destructive techniques to evaluate and determine mango maturity and ripeness levels. However, most of these reported works were conducted using single-modality sensing systems, either using an electronic nose, acoustics or other non-destructive measurements. This paper presents the work on the classification of mangoes (Magnifera Indica cv. Harumanis) maturity and ripeness levels using fusion of the data of an electronic nose and an acoustic sensor. Three groups of samples each from two different harvesting times (week 7 and week 8) were evaluated by the e-nose and then followed by the acoustic sensor. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to discriminate the mango harvested at week 7 and week 8 based solely on the aroma and volatile gases released from the mangoes. However, when six different groups of different maturity and ripeness levels were combined in one classification analysis, both PCA and LDA were unable to discriminate the age difference of the Harumanis mangoes. Instead of six different groups, only four were observed using the LDA, while PCA showed only two distinct groups. By applying a low level data fusion technique on the e-nose and acoustic data, the classification for maturity and ripeness levels using LDA was improved. However, no significant improvement was observed using PCA with data fusion technique. Further work using a hybrid LDA-Competitive Learning Neural Network was performed to validate the fusion technique and classify the samples. It was found that the LDA-CLNN was also improved significantly when data fusion was applied.
  11. Zakaria A, Shakaff AY, Adom AH, Ahmad MN, Masnan MJ, Aziz AH, et al.
    Sensors (Basel), 2010;10(10):8782-96.
    PMID: 22163381 DOI: 10.3390/s101008782
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
  12. Zakaria A, Shakaff AY, Masnan MJ, Ahmad MN, Adom AH, Jaafar MN, et al.
    Sensors (Basel), 2011;11(8):7799-822.
    PMID: 22164046 DOI: 10.3390/s110807799
    The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
  13. Yusuf N, Zakaria A, Omar MI, Shakaff AY, Masnan MJ, Kamarudin LM, et al.
    BMC Bioinformatics, 2015;16:158.
    PMID: 25971258 DOI: 10.1186/s12859-015-0601-5
    Effective management of patients with diabetic foot infection is a crucial concern. A delay in prescribing appropriate antimicrobial agent can lead to amputation or life threatening complications. Thus, this electronic nose (e-nose) technique will provide a diagnostic tool that will allow for rapid and accurate identification of a pathogen.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links