Early diagnosis of neurodegenerative diseases is of paramount importance for successful treatment. Lack of sensitive and early biomarkers for diagnosis of diseases like Parkinson's disease (PD) is a handicapping problem for all movement disorders specialists. Using serum autoimmune antibodies (AIAs) against neural proteins is a new promising strategy to diagnose brain disorders through non-invasive and cost-effective method. In the present study, we measured the level of AIAs against α-synuclein (α-syn), which is an important protein involved in the pathogenesis of PD. In our study patients with PD (46 patients), Alzheimer's disease (AD) (27 patients) and healthy controls (20 patients) were evaluated according to their sera α-syn AIAs levels. Interestingly, α-syn AIAs were significantly elevated in PD group compared to AD and healthy controls, which advocates their use for diagnosis of PD.
Neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by progressive neuronal loss and pathological accumulation of some proteins. Developing new biomarkers for both diseases is highly important for the early diagnosis and possible development of neuro-protective strategies. Serum antibodies (AIAs) against neuronal proteins are potential biomarkers for AD and PD that may be formed in response to their release into systemic circulation after brain damage. In the present study, two AIAs (tubulin and tau) were measured in sera of patients of PD and AD, compared to healthy controls. Results showed that both antibodies were elevated in patients with PD and AD compared to match controls. Curiously, the profile of elevation of antibodies was different in both diseases. In PD cases, tubulin and tau AIAs levels were similar. On the other hand, AD patients showed more elevation of tau AIAs compared to tubulin. Our current results suggested that AIAs panel could be able to identify cases with neuro-degeneration when compared with healthy subjects. More interestingly, it is possible to differentiate between PD and AD cases through identifying specific AIAs profile for each neurodegenerative states.
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. It affects the locomotor system, leading to a final severe disability through degeneration of dopaminergic neurons. Despite several therapeutic approaches used, no treatment has been proven to be effective; however, cell therapy may be a promising therapeutic method. In addition, the use of the intranasal (IN) route has been advocated for delivering various therapies to the brain. In the present study, the IN route was used for administration of mesenchymal stem cells (MSCs) in a mouse model of PD, with the aim to evaluate IN delivery as an alternative route for cell based therapy administration in PD. The PD model was developed in C57BL/6 mice using intraperitoneal rotenone administration for 60 consecutive days. MSCs were isolated from the mononuclear cell fraction of pooled bone marrow from C57BL/6 mice and incubated with micrometer-sized iron oxide (MPIO) particles. For IN administration, we used a 20 µl of 5×10(5) cell suspension. Neurobehavioral assessment of the mice was performed, and after sacrifice, brain sections were stained with Prussian blue to detect the MPIO-labeled MSCs. In addition, immunohistochemical evaluation was conducted to detect tyrosine hydroxylase (TH) antibodies in the corpus striatum and dopaminergic neurons in the substantia nigra pars compacta (SNpc). The neurobehavioral assessment revealed progressive deterioration in the locomotor functions of the rotenone group, which was improved following MSC administration. Histopathological evaluation of brain sections in the rotenone+MSC group revealed successful delivery of MSCs, evidenced by positive Prussian blue staining. Furthermore, rotenone treatment led to significant decrease in dopaminergic neuron number in SNpc, as well as similar decrease in the corpus striatum fiber density. By contrast, in animals receiving IN administration of MSCs, the degeneration caused by rotenone treatment was significantly counteracted. In conclusion, the present study validated that IN delivery of MSCs may be a potential safe, easy and cheap alternative route for stem cell treatment in neurodegenerative disorders.