Strategies for synthetic control of anisotropic metal nanostructures have grown in recent years in part due to their great potential for application as surface-enhanced Raman scattering (SERS) sensing substrates. It has been shown that SERS using silver substrates is a powerful tool for identification and qualification of trace chemical analysis on the basis of their unique molecular vibrations. In this work, we synthesized star-shaped silver nanostructures and fabricated SERS substrates to use the SERS enhancement of the Raman signal to detect neonicotinoid pesticides. These silver nanostar substrates were prepared by assembling the nanostar particles on a glass substrate surface using a self-assembly technique with various layers of silver nanostars film. The silver nanostar distribution on the solid substrate surface was found to have good reproducibility, reusability and were a stable SERS substrate giving SERS enhancements for pesticide detection at concentrations as low as 10-6 mg/ml. The distribution of these silver nanostars on the surface allowed excellent reproducibility of the detection with a low relative standard derivation (RSD) of SERS intensity of 8%. This work potentially builds a platform for an ultrasensitive detector where samples can be probed with little to no pre-processing and a range of pollutants can be detected at very low levels.
Silver nanoparticles deposited on quartz substrates are widely used as SERS substrates. The nanoparticles can be deposited directly from colloidal solution by dipping technique. However, the adhesion of the particles on the quartz surface is very poor. Normally the substrate is pre-treated with hydroxylation or silanisation process. In this paper, we have demonstrated that the application of the sequence pre-treatment hydroxylation and silanisation have improved the density of silver nanoplates desposited on the quartz surface. •Sequence hydroxylation and silanisation pre-treatment assists the deposition of the nanoplate on the surface.•Various immersion times of the quartz surface into the colloidal nanoplates determined size distributions and density surface of the nanoplates on the surface.