METHODS: An online REDCap questionnaire was circulated to surgeons in the Asia-Pacific region during the period of July 2019 to September 2019 to inquire about various components of nonoperative treatment for AIS. Aspects under study included access to screening, when MRIs were obtained, quality-of-life assessments used, role of scoliosis-specific exercises, bracing criteria, type of brace used, maturity parameters used, brace wear regimen, follow-up criteria, and how braces were weaned. Comparisons were made between middle-high income and low-income countries, and experience with nonoperative treatment.
RESULTS: A total of 103 responses were collected. About half (52.4%) of the responders had scoliosis screening programs and were particularly situated in middle-high income countries. Up to 34% obtained MRIs for all cases, while most would obtain MRIs for neurological problems. The brace criteria were highly variable and was usually based on menarche status (74.7%), age (59%), and Risser staging (92.8%). Up to 52.4% of surgeons elected to brace patients with large curves before offering surgery. Only 28% of responders utilized CAD-CAM techniques for brace fabrication and most (76.8%) still utilized negative molds. There were no standardized criteria for brace weaning.
CONCLUSION: There are highly variable practices related to nonoperative treatment for AIS and may be related to availability of resources in certain countries. Relative consensus was achieved for when MRI should be obtained and an acceptable brace compliance should be more than 16 hours a day.
METHODS: Two hundred and twenty sets of radiographs of the spine and the left hand and wrist of patients with idiopathic scoliosis were assessed for skeletal maturity and reliability testing. Risser staging, Sanders staging (SS), distal radius and ulna (DRU) classification, the proximal humeral ossification system (PHOS), and the novel proximal femur maturity index (PFMI) were used. The PFMI was newly developed on the basis of the radiographic appearances of the femoral head, greater trochanter, and triradiate cartilage. It consists of 7 grades (0 to 6) associated with increasing skeletal maturity. The PFMI was evaluated through its relationship with pubertal growth (i.e., the rate of changes of standing and sitting body height [BH] and arm span [AS]) and with established skeletal maturity indices. Longitudinal growth data and 780 corresponding spine radiographs were assessed to detect peak growth using receiver operating characteristic (ROC) curve analysis.
RESULTS: The PFMI was found to be correlated with chronological age (τb = 0.522), growth rates based on standing BH (τb = -0.303), and AS (τb = -0.266) (p < 0.001 for all). The largest growth rate occurred at PFMI grade 3, with mean standing BH growth rates (and standard deviations) of 0.79 ± 0.44 cm/month for girls and 1.06 ± 0.67 cm/mo for boys. Growth rates of 0.12 ± 0.23 cm/mo (girls) and 0 ± 0 cm/mo (boys) occurred at PFMI grade 6, indicating growth cessation. Strong correlations were found between PFMI gradings and Risser staging (τb = 0.743 and 0.774 for girls and boys), Sanders staging (τb = 0.722 and 0.736, respectively), and radius (τb = 0.792 and 0.820) and ulnar gradings (τb = 0.777 and 0.821), and moderate correlations were found with PHOS stages (τb = 0.613 and 0.675) (p < 0.001 for all). PFMI gradings corresponded to as young as SS1, R4, U1, and PHOS stage 1. Fair to excellent interrater and intrarater reliabilities were observed. PFMI grade 3 was most prevalent and predictive for peak growth based on ROC results.
CONCLUSIONS: The PFMI demonstrated clear pubertal growth phases with satisfactory reliability. Grade 3 indicates peak growth and grade 6 indicates growth cessation.
CLINICAL RELEVANCE: The use of PFMI can benefit patients by avoiding additional radiation in skeletal maturity assessment and can impact current clinical protocol of patient visits. PFMI gradings had strong correlations with SS, DRU gradings, and Risser staging, and they cross-referenced to their established grades at peak growth and growth cessation. PFMI may aid in clinical decision making.
PURPOSE: Although intraoperative neurophysiological monitoring (IONM) is critical in spine surgery, its usage is largely based on the surgeon's discretion, and studies on its usage trends in Asia-Pacific countries are lacking. This study aimed to examine current trends in IONM usage in Asia-Pacific countries.
OVERVIEW OF LITERATURE: IONM is an important tool for minimizing neurological complications and detecting spinal cord injuries after spine surgery. IONM can be performed using several modalities, such as transcranial electrical stimulation-muscle evoked potentials (Tc-MEP) and somatosensory evoked potentials (SEP).
METHODS: Spine surgeons of the Asia-Pacific Spine Society were asked to respond to a web-based survey on IONM. The questionnaire covered various aspects of IONM, including its common modality, Tc-MEP details, necessities for consistent use, and recommended modalities in major spine surgeries and representative surgical procedures.
RESULTS: Responses were received from 193 of 626 spine surgeons. Among these respondents, 177 used IONM routinely. Among these 177 respondents, 17 mainly used SEP, whereas the majority favored Tc-MEPs. Although a >50% decrease is the commonly used alarm point in Tc-MEP, half of the Tc-MEP users had no protocols planned for such scenarios. Moreover, half of the Tc-MEP users experienced complications, with bite injuries being the most common. Most respondents strongly recommended IONM in deformity surgery for pediatric and adult populations and tumor resection surgery for intramedullary spinal cord tumors. Conversely, IONM was the least recommended in lumbar spinal canal stenosis surgery.
CONCLUSIONS: Spine surgeons in Asia-Pacific countries favored IONM use, indicating widespread routine utilization. Tc-MEP was the predominant modality for IONM, followed by SEPs.