Displaying all 2 publications

Abstract:
Sort:
  1. Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z
    Vet Microbiol, 2020 Feb;241:108549.
    PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549
    Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
  2. Li L, Shuai L, Sun J, Li C, Yi P, Zhou Z, et al.
    Food Sci Nutr, 2020 Feb;8(2):1284-1294.
    PMID: 32148834 DOI: 10.1002/fsn3.1417
    Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links