Displaying all 3 publications

Abstract:
Sort:
  1. Shuan Ju Teh C, Thong KL, Osawa R, Heng Chua K
    J Gen Appl Microbiol, 2011;57(1):19-26.
    PMID: 21478644
    Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.
  2. Ajit Singh V, Chun Haw B, Haseeb A, Shuan Ju Teh C
    J Orthop Surg (Hong Kong), 2019 4 5;27(2):2309499019839616.
    PMID: 30943842 DOI: 10.1177/2309499019839616
    PURPOSE:: Arthroplasty-related infection has grown worldwide. Revision procedures for infection are associated with longer operating time, superior amounts of blood loss, and substantial economic encumbrance. To overcome cost, many surgeons opt for hand-mixed vancomycin into the bone cement. The objective of this research was to assess the biomechanical strength and antibacterial properties of hand-mixed vancomycin bone cement at different concentrations with commonly used industrial preblended antibiotic bone cement and plain cement. The target was to determine the ideal concentration of antibiotics that can be used in the preparation of hand-mixed vancomycin cement that delivers maximum antibiotics concentration without compromising its biomechanical properties.

    MATERIALS AND METHODS:: Vancomycin-impregnated polymethyl methacrylate (PMMA) specimen was hand prepared in varying concentrations (1-4 g). The authors tested three-point bending strength to determine 'maximum bending load' and stiffness and its antibacterial activity by looking into the zone of inhibition on methicillin-resistant Staphylococcus aureus-impregnated agar plate. These were compared with the industrial preblended Simplex™ P with 1 g tobramycin.

    RESULTS:: This study exhibited that vancomycin-PMMA disk that contained higher concentration of antibiotics had significantly higher antibacterial activity. The control group (plain cement) and industrial PMMA with preblended antibiotic (tobramycin) showed stable mechanical strength, while the hand-mixed antibiotic cement (HMAC) had variable mechanical strength varying on the concentration of antibiotics used.

    CONCLUSION:: It was effectively concluded that HMAC is advantageous as a cement spacer; however, it is not recommended for primary arthroplasty and second-stage revision arthroplasty. The recommended maximum concentration of vancomycin based on this study is 2 g/pack (40 g) of cement. Industrial preblended antibiotic cement is superior to hand-mixed cement.

  3. Shuan Ju Teh C, Lin Thong K, Tein Ngoi S, Ahmad N, Balakrish Nair G, Ramamurthy T
    J Gen Appl Microbiol, 2009 Dec;55(6):419-25.
    PMID: 20118606
    A pair of primers targeting the hlyA gene for Vibrio cholerae which could distinguish the classical from El Tor biotypes was designed and combined with other specific primers for ompW, rfb complex, and virulence genes such as ctxA, toxR, and tcpI in a multiplex PCR (m-PCR) assay. This m-PCR correctly identified 39 V. cholerae from clinical, water and seafood samples. The efficiency of this multiplex PCR (m-PCR) was compared with conventional biochemical and serogrouping methods. One O139 and 25 O1 V. cholerae strains including 10 environmental strains harbored all virulence-associated genes except 1 clinical strain which only had toxR and hlyA genes. Thirteen environmental strains were classified as non-O1/non-O139 and had the toxR and hlyA genes only. The detection limit of m-PCR was 7 x 10(4) cfu/ml. The m-PCR test was reliable and rapid and reduced the identification time to 4 h.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links