Displaying all 2 publications

Abstract:
Sort:
  1. Khan A, Sapuan SM, Siddiqui VU, Zainudin ES, Zuhri MYM, Harussani MM
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127119.
    PMID: 37776930 DOI: 10.1016/j.ijbiomac.2023.127119
    Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.
  2. Yusuf J, Sapuan SM, Ansari MA, Siddiqui VU, Jamal T, Ilyas RA, et al.
    Int J Biol Macromol, 2024 Jan;255:128121.
    PMID: 37984579 DOI: 10.1016/j.ijbiomac.2023.128121
    Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links