Affiliations 

  • 1 Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; National Institute of Textile Engineering and Research (NITER), Nayarhat, Savar, Dhaka 1350, Bangladesh
  • 2 Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 4300, Selangor, Malaysia. Electronic address: sapuan@upm.edu.my
  • 3 Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • 4 Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • 5 Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Tokyo, Japan
Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127119.
PMID: 37776930 DOI: 10.1016/j.ijbiomac.2023.127119

Abstract

Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.