Displaying all 11 publications

Abstract:
Sort:
  1. Harussani MM, Sapuan SM, Rashid U, Khalina A
    Polymers (Basel), 2021 May 24;13(11).
    PMID: 34073691 DOI: 10.3390/polym13111707
    Slow pyrolysis using a batch reactor at 450 °C was applied to the polypropylene (PP) powder derived from Coronavirus Disease 2019 (COVID-19) isolation gown waste to yield char briquettes, using sugar palm starch (SPS) and a manual hydraulic press. These studies are significant because of reductions in plastic waste from the preparation of barbecue coal due to environmental sustainability. The results presented here include the physical, morphological, thermal, combustion, and mechanical properties of char when reinforced with various percentages of SPS loadings (0, 10, 20, 30, and 40%), which act as a matrix/binder to produce char/sugar palm starch (C/SPS) composites. The physical and morphological characteristics of C/SPS composites were determined using Fourier transform infrared (FTIR) and field emission scanning electron microscopy (FESEM). On the other hand, the thermal and combustion properties of the C/SPS briquettes were studied via thermogravimetric and bomb calorimeter analysis. The results show that the compressive strength of the briquettes increased as the SPS loading increased, whereas the higher heating values (HHV) reduced. The findings indicate that C-80/SPS-20 briquettes presented excellent combustion characteristics (1,761,430 J/g) with satisfactory mechanical strength (1.463 MPa) in the compression test. Thus, C-80/SPS-20 briquettes are the most suitable composites for domestic and commercial uses.
  2. Harussani MM, Sapuan SM, Rashid U, Khalina A, Ilyas RA
    Sci Total Environ, 2022 Jan 10;803:149911.
    PMID: 34525745 DOI: 10.1016/j.scitotenv.2021.149911
    COVID-19 global pandemic, originated from Wuhan, resulted in a massive increase in the output of polypropylene (PP)-based personal protective equipment (PPE) for healthcare workers. The continuous demand of PPE across the world caused the PP based plastic wastes accumulation. Some alternative approaches that have been practiced apart from collecting the plastic waste in the landfills are incineration approach and open burning. However, there were many drawbacks of these practices, which promote the release of chemical additives and greenhouse gases into the environment. Therefore, a proper approach in treating the plastic wastes, which introduces conversion of plastic wastes into renewable energy is paramount. Along the way of extensive research and studies, the recovery of PP plastic to fuel-like liquid oil and solid char through thermal decomposition of pyrolysis process, helps in reducing the number of PP plastic wastes and produces good quality pyrolysis liquid oil and solid char to be used in fuel applications. This paper summarizes the pyrolysis process for massively produced PP plastic wastes, type of pyrolysis used and the main pyrolysis parameters affecting the product yields. Literature studies of pyrolysis of PP plastic and several key points to optimize solid char production for PP were thoroughly elaborated in this review paper.
  3. Harussani MM, Rashid U, Sapuan SM, Abdan K
    Polymers (Basel), 2021 Nov 17;13(22).
    PMID: 34833277 DOI: 10.3390/polym13223980
    Yields of carbonaceous char with a high surface area were enhanced by decreasing the temperature to improve the conversion of hazardous plastic polypropylene (PP), the major component in abundantly used isolation gowns. This study applied pyrolysis with different low pyrolytic temperatures to convert disinfected PP-based isolation gown waste (PP-IG) into an optimised amount of char yields. A batch reactor with a horizontal furnace was used to mediate the thermal decomposition of PP-IG. Enhanced surface area and porosity value of PP-IG derived char were obtained via an optimised slow pyrolysis approach. The results showed that the amount of yielded char was inversely proportional to the temperature. This process relied heavily on the process parameters, especially pyrolytic temperature. Additionally, as the heating rate decreased, as well as longer isothermal residence time, the char yields were increased. Optimised temperature for maximum char yields was recorded. The enhanced SBET values for the char and its pore volume were collected, ~24 m2 g-1 and ~0.08 cm3 g-1, respectively. The char obtained at higher temperatures display higher volatilisation and carbonisation. These findings are beneficial for the utilisation of this pyrolysis model in plastic waste management and conversion of PP-IG waste into char for further activated carbon and fuel briquettes applications, with the enhanced char yields, amidst the COVID-19 pandemic.
  4. Khan A, Sapuan SM, Siddiqui VU, Zainudin ES, Zuhri MYM, Harussani MM
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127119.
    PMID: 37776930 DOI: 10.1016/j.ijbiomac.2023.127119
    Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.
  5. Lee CH, Khalina A, Nurazzi NM, Norli A, Harussani MM, Rafiqah SA, et al.
    Polymers (Basel), 2021 Apr 25;13(9).
    PMID: 33922885 DOI: 10.3390/polym13091390
    In this review, the challenges faced by woven kenaf thermoset polymer composites in Malaysia were addressed with respect to three major aspects: woven kenaf reinforcement quality, Malaysian citizen awareness of woven kenaf thermoset composite products, and government supports. Kenaf plantations were introduced in Malaysia in the last two decades, but have generally not produced much kenaf composite product that has been widely accepted by the public. However, woven kenaf fiber enhances the thermoset composites to a similar degree or better than other natural fibers, especially with respect to impact resistance. Woven kenaf composites have been applied in automotive structural studies in Malaysia, yet they are still far from commercialization. Hence, this review discusses the kenaf fiber woven in Malaysia, thermoset and bio-based thermoset polymers, thermoset composite processing methods and, most importantly, the challenges faced in Malaysia. This review sets guidelines, provides an overview, and shares knowledge as to the potential challenges currently faced by woven kenaf reinforcements in thermoset polymer composites, allowing researchers to shift their interests and plans for conducting future studies on woven kenaf thermoset polymer composites.
  6. Abotbina W, Sapuan SM, Ilyas RA, Sultan MTH, Alkbir MFM, Sulaiman S, et al.
    Materials (Basel), 2022 Oct 09;15(19).
    PMID: 36234333 DOI: 10.3390/ma15196992
    The rapid use of petroleum resources coupled with increased awareness of global environmental problems associated with the use of petroleum-based plastics is a major driving force in the acceptance of natural fibers and biopolymers as green materials. Because of their environmentally friendly and sustainable nature, natural fibers and biopolymers have gained significant attention from scientists and industries. Cassava (Manihot esculenta) is a plant that has various purposes for use. It is the primary source of food in many countries and is also used in the production of biocomposites, biopolymers, and biofibers. Starch from cassava can be plasticized, reinforced with fibers, or blended with other polymers to strengthen their properties. Besides that, it is currently used as a raw material for bioethanol and renewable energy production. This comprehensive review paper explains the latest developments in bioethanol compounds from cassava and gives a detailed report on macro and nano-sized cassava fibers and starch, and their fabrication as blend polymers, biocomposites, and hybrid composites. The review also highlights the potential utilization of cassava fibers and biopolymers for industrial applications such as food, bioenergy, packaging, automotive, and others.
  7. Suriani MJ, Ilyas RA, Zuhri MYM, Khalina A, Sultan MTH, Sapuan SM, et al.
    Polymers (Basel), 2021 Oct 13;13(20).
    PMID: 34685272 DOI: 10.3390/polym13203514
    Increasing scientific interest has occurred concerning the utilization of natural fiber-enhanced hybrid composites that incorporate one or more types of natural enhancement. Annual natural fiber production is estimated to be 1,783,965 × 103 tons/year. Extensive studies have been conducted in the domains of natural/synthetic as well as natural/natural hybrid composites. As synthetic fibers have better rigidity and strength than natural fibers, natural/synthetic hybrid composites have superior qualities via hybridization compared to natural composites in fibers. In general, natural fiber compounds have lower characteristics, limiting the use of natural composites reinforced by fiber. Significant effort was spent in enhancing the mechanical characteristics of this group of materials to increase their strengths and applications, especially via the hybridization process, by manipulating the characteristics of fiber-reinforced composite materials. Current studies concentrate on enhancing the understanding of natural fiber-matrix adhesion, enhancing processing methods, and natural fiber compatibility. The optimal and resilient conceptions have also been addressed due to the inherently more significant variabilities. Moreover, much research has tackled natural fiber reinforced hybrid composite costs. In addition, this review article aims to offer a review of the variables that lead to the mechanical and structural failure of natural fiber reinforced polymer composites, as well as an overview of the details and costings of the composites.
  8. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, et al.
    Nanomaterials (Basel), 2021 Aug 26;11(9).
    PMID: 34578502 DOI: 10.3390/nano11092186
    Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength. Although a large number of studies have been conducted on these novel materials, there have only been a few reviews published on their mechanical performance in polymer composites. As a result, in this review we have covered some of the key application factors as well as the mechanical properties of CNTs-reinforced polymer composites. Finally, the potential uses of CNTs hybridised with polymer composites reinforced with natural fibres such as kenaf fibre, oil palm empty fruit bunch (OPEFB) fibre, bamboo fibre, and sugar palm fibre have been highlighted.
  9. Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641185 DOI: 10.3390/polym13193365
    A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
  10. Mohd Nurazzi N, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, et al.
    Polymers (Basel), 2021 Mar 26;13(7).
    PMID: 33810584 DOI: 10.3390/polym13071047
    A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.
  11. Nurazzi NM, Asyraf MRM, Athiyah SF, Shazleen SS, Rafiqah SA, Harussani MM, et al.
    Polymers (Basel), 2021 Jun 30;13(13).
    PMID: 34209030 DOI: 10.3390/polym13132170
    In the field of hybrid natural fiber polymer composites, there has been a recent surge in research and innovation for structural applications. To expand the strengths and applications of this category of materials, significant effort was put into improving their mechanical properties. Hybridization is a designed technique for fiber-reinforced composite materials that involves combining two or more fibers of different groups within a single matrix to manipulate the desired properties. They may be made from a mix of natural and synthetic fibers, synthetic and synthetic fibers, or natural fiber and carbonaceous materials. Owing to their diverse properties, hybrid natural fiber composite materials are manufactured from a variety of materials, including rubber, elastomer, metal, ceramics, glasses, and plants, which come in composite, sandwich laminate, lattice, and segmented shapes. Hybrid composites have a wide range of uses, including in aerospace interiors, naval, civil building, industrial, and sporting goods. This study intends to provide a summary of the factors that contribute to natural fiber-reinforced polymer composites' mechanical and structural failure as well as overview the details and developments that have been achieved with the composites.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links