Displaying all 3 publications

Abstract:
Sort:
  1. Al-Hakem H, Doets AY, Stino AM, Zivkovic SA, Andersen H, Willison HJ, et al.
    Neurology, 2023 Jun 06;100(23):e2386-e2397.
    PMID: 37076309 DOI: 10.1212/WNL.0000000000207282
    BACKGROUND AND OBJECTIVES: To investigate CSF findings in relation to clinical and electrodiagnostic subtypes, severity, and outcome of Guillain-Barré syndrome (GBS) based on 1,500 patients in the International GBS Outcome Study.

    METHODS: Albuminocytologic dissociation (ACD) was defined as an increased protein level (>0.45 g/L) in the absence of elevated white cell count (<50 cells/μL). We excluded 124 (8%) patients because of other diagnoses, protocol violation, or insufficient data. The CSF was examined in 1,231 patients (89%).

    RESULTS: In 846 (70%) patients, CSF examination showed ACD, which increased with time from weakness onset: ≤4 days 57%, >4 days 84%. High CSF protein levels were associated with a demyelinating subtype, proximal or global muscle weakness, and a reduced likelihood of being able to run at week 2 (odds ratio [OR] 0.42, 95% CI 0.25-0.70; p = 0.001) and week 4 (OR 0.44, 95% CI 0.27-0.72; p = 0.001). Patients with the Miller Fisher syndrome, distal predominant weakness, and normal or equivocal nerve conduction studies were more likely to have lower CSF protein levels. CSF cell count was <5 cells/μL in 1,005 patients (83%), 5-49 cells/μL in 200 patients (16%), and ≥50 cells/μL in 13 patients (1%).

    DISCUSSION: ACD is a common finding in GBS, but normal protein levels do not exclude this diagnosis. High CSF protein level is associated with an early severe disease course and a demyelinating subtype. Elevated CSF cell count, rarely ≥50 cells/μL, is compatible with GBS after a thorough exclusion of alternative diagnoses.

    CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that CSF ACD (defined by the Brighton Collaboration) is common in patients with GBS.

  2. Doets AY, Lingsma HF, Walgaard C, Islam B, Papri N, Davidson A, et al.
    Neurology, 2022 Feb 01;98(5):e518-e532.
    PMID: 34937789 DOI: 10.1212/WNL.0000000000013139
    BACKGROUND AND OBJECTIVES: The clinical course and outcome of the Guillain-Barré syndrome (GBS) are diverse and vary among regions. The modified Erasmus GBS Outcome Score (mEGOS), developed with data from Dutch patients, is a clinical model that predicts the risk of walking inability in patients with GBS. The study objective was to validate the mEGOS in the International GBS Outcome Study (IGOS) cohort and to improve its performance and region specificity.

    METHODS: We used prospective data from the first 1,500 patients included in IGOS, aged ≥6 years and unable to walk independently. We evaluated whether the mEGOS at entry and week 1 could predict the inability to walk unaided at 4 and 26 weeks in the full cohort and in regional subgroups, using 2 measures for model performance: (1) discrimination: area under the receiver operating characteristic curve (AUC) and (2) calibration: observed vs predicted probability of being unable to walk independently. To improve the model predictions, we recalibrated the model containing the overall mEGOS score, without changing the individual predictive factors. Finally, we assessed the predictive ability of the individual factors.

    RESULTS: For validation of mEGOS at entry, 809 patients were eligible (Europe/North America [n = 677], Asia [n = 76], other [n = 56]), and 671 for validation of mEGOS at week 1 (Europe/North America [n = 563], Asia [n = 65], other [n = 43]). AUC values were >0.7 in all regional subgroups. In the Europe/North America subgroup, observed outcomes were worse than predicted; in Asia, observed outcomes were better than predicted. Recalibration improved model accuracy and enabled the development of a region-specific version for Europe/North America (mEGOS-Eu/NA). Similar to the original mEGOS, severe limb weakness and higher age were the predominant predictors of poor outcome in the IGOS cohort.

    DISCUSSION: mEGOS is a validated tool to predict the inability to walk unaided at 4 and 26 weeks in patients with GBS, also in countries outside the Netherlands. We developed a region-specific version of mEGOS for patients from Europe/North America.

    CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that the mEGOS accurately predicts the inability to walk unaided at 4 and 26 weeks in patients with GBS.

    TRIAL REGISTRATION INFORMATION: NCT01582763.

  3. Thomma RCM, Halstead SK, de Koning LC, Wiegers EEJA, Gourlay DS, Tio-Gillen AP, et al.
    Brain, 2025 Mar 17.
    PMID: 40096525 DOI: 10.1093/brain/awaf102
    Guillain-Barré syndrome is an acute polyradiculoneuropathy in which preceding infections often elicit the production of antibodies that target peripheral nerve antigens, principally gangliosides. Anti-ganglioside antibodies are thought to play a key role in the clinical diversity of the disease and can be helpful in clinical practice. Extensive research into clinical associations of individual anti-ganglioside antibody specificities has been performed. Recent research has highlighted glycolipid complexes, glycolipid combinations that may alter antibody binding, as targets. In this study, we investigated antibody reactivity patterns to glycolipids and glycolipid complexes using combinatorial array, in relation to clinical features in Guillain-Barré syndrome. In total, 1413 patients from the observational International Guillain-Barré syndrome Outcome Study (0-91 years, 60.3% male) and 1061 controls (healthy, family, infectious, vaccination, other neurological disease) were included. Acute-phase sera from patients were screened for IgM, IgG, and IgA reactivity against 15 glycolipids and one phospholipid and their heteromeric complexes, similarly to archived control sera. Antibody specificities and reactivity patterns were analysed in relation to clinical features. Of all patients, 1309 (92.6%) were positive for at least one anti-glycolipid (complex) antibody. Anti-GM1 and anti-GQ1b (complex) antibodies best distinguished motor Guillain-Barré syndrome and Miller Fisher syndrome from controls, with antibodies to glycolipid complexes outperforming antibodies to single glycolipids. Three models consisting of anti-glycolipid (complex) antibodies distinguished patients with Guillain-Barré syndrome, the motor variant, and Miller Fisher syndrome from controls with high sensitivity and specificity, performing better than antibodies to single glycolipids used in clinical practice. Seven patient clusters with particular antibody reactivity patterns were identified. These clusters were distinguished by geographical region, clinical variants, preceding Campylobacter jejuni infection, electrophysiological subtypes, the Medical Research Council sum score at study entry, and the ability to walk 10 meters unaided at 26 weeks. Two patient clusters with distinct anti-GM1 (complex) reactivity (broad versus restricted) differed in frequency of the axonal subtype. In cumulative incidence analyses, 15 anti-glycolipid (complex) antibodies were associated with the time required to regain the ability to walk 10 meters unaided. After adjustment for known prognostic factors, IgG anti-GQ1b:GM4, GQ1b:PS, and GQ1b:Sulphatide remained associated with faster recovery. Addition of anti-glycolipid antibodies to clinical prognostic models slightly improved their discriminative capacity, though insufficiently to improve the models. Measurement of anti-glycolipid antibodies by combinatorial array increases the diagnostic yield compared to assaying single glycolipids, identifies clinically relevant antibody reactivity patterns to glycolipids and glycolipid complexes, and may be useful in outcome prediction in Guillain-Barré syndrome.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links