The use of herbal preparations remained the main approach of folk medicine to the treatment of ailments and debilitating diseases. Initial intensive researches conducted on Lemongrass extracts (tea) may have showed conflicting evidences, however the resurgence in claims of folk medicine practitioners necessitated further inquiry into the efficacy of the tea. Lemongrass tea contains several biocompounds in its decoction, infusion and essential oil extracts. Anti-oxidant, anti-inflammatory, anti-bacterial, anti-obesity, antinociceptive, anxiolytic and antihypertensive evidences of lemongrass tea were clearly elucidated to support initial pharmacological claims. Lemongrass tea was non-toxic, non-mutagenic and receives wide acceptance among alternative medicine practitioners in several developing countries. This review therefore presents previous research activities, technologies and information surrounding bioactivities of lemongrass tea. Areas of future researches which may elucidate mechanisms of the biological properties of lemongrass extracts were highlighted.
This study involves extraction of sulfated polysaccahride (SP) from brown seaweed (Turbinaria turbinata). Eight processing conditions affecting enzyme aided extraction (EAE) were screened using Plackett-Burman design. Three significant factors (hydrolysis time, enzyme concentration and extraction stage) were optimized using Faced Centred Central Composite Design in Random Surface Methods. Micrograph obtained using Field Emission Scanning Electron Microscopy revealed that cellulase degradation ruptured the seaweed cell matrix thus caused increase in the release of SP. The optimum conditions for extraction of SP from T. turbinata are: extraction stage of 2, hydrolysis time of 19.5 h and enzyme concentration of 1.5 μl/ml to produce 25.13% yield. The SP obtained from cellulase treated T. turbinata is a suitable anti-inflammatory agent for pharmaceutical applications.
Goat Warble Fly Infestation (GWFI) is also known as subcutaneous myiasis caused by Przhevalskiana silenus (Diptera: Oestridae). It is widely distributed in tropical and sub-tropical areas of the world. In goats, WFI is usually detected through conventional procedure which underestimated the infestation. The current study was designed to determine the serodiagonsis of GWFI (through IDEXX Hypodermosis serum antibody test) and also aimed to investigate its seroepizootiological profile in Pothwar region, Pakistan from 2013-14. The results showed that average seropositivity (ELISA kit) of GWFI was 18.5% whereas, it was 11% by using conventional procedure (Palpation method) depicting a significant difference (p<0.05). Higher seropositivity (30.8%) was observed in Jhelum district as compared to e Attock district (6%). The L1 larvae were found in September, while nodules start appearing in October to December and last until the end of February. The month wise peaks of optical density (OD) was higher in December which gradually decrease along with the end of winter season. The prevalence of GWFI revealed no significant difference among three host breeds (Jattal, Beetal and Tedy). According to the results, high infestation rate (28%) was observed in young animals of age group < 1 year as compared to old animals (> 2 years). Topographically, hilly areas (33%) provide favourable climatic conditions for the propagating of larval stages. Sex difference showed no significant difference. The seroprevalence varied significantly with respect to age, month, districts and topographical location. The current study proved that serologic diagnosis (commercial ELISA kit) as more sensitive and accurate for timely diagnosis of GWFI than traditional method. The information on the epizootiology of P. silenus in goats of Pothwar region would help in devising effective control strategies.
Aqueous extracts obtained from five Malaysian brown seaweeds, Sargassum duplicatum, Sargassum binderi, Sargassum fulvellum, Padina australis, and Turbinaria turbinata, were investigated for their abilities to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophage RAW 264.7 cell lines as well as to determine their chemical composition. The percentage yield of extracts varied among species, with P. australis having the lowest yield and T. turbinata having the highest yield. The chemical compositions of the extracts showed that the percentage of sulfate ions as well as uronic acid and total sugar content varied significantly. All extracts contained high fucose and inhibited NO secretion in a dose-dependent manner. Extracts of P. australis and T. turbinata dosed at 200 μg/mL were able to inhibit NO secretion by > 75%. Furthermore, cytotoxicity assays revealed that some extracts were moderately toxic, while others were not. Based on these results, brown seaweed of Malaysian origin should be investigated for the production of additional anti-inflammatory compounds.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20 fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst) GeV, with a total uncertainty of 0.33 GeV.
The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.