Displaying all 3 publications

Abstract:
Sort:
  1. Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S
    Braz J Microbiol, 2020 Sep;51(3):1317-1326.
    PMID: 32399689 DOI: 10.1007/s42770-020-00295-0
    Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
  2. Karim S, Bae S, Greenwood D, Hanna K, Singhal N
    Water Res, 2017 11 15;125:32-41.
    PMID: 28826034 DOI: 10.1016/j.watres.2017.08.029
    The catalytic properties of nanoparticles (e.g., nano zero valent iron, nZVI) have been used to effectively treat a wide range of environmental contaminants. Emerging contaminants such as endocrine disrupting chemicals (EDCs) are susceptible to degradation by nanoparticles. Despite extensive investigations, questions remain on the transformation mechanism on the nZVI surface under different environmental conditions (redox and pH). Furthermore, in terms of the large-scale requirement for nanomaterials in field applications, the effect of polymer-stabilization used by commercial vendors on the above processes is unclear. To address these factors, we investigated the degradation of a model EDC, the steroidal estrogen 17α-ethinylestradiol (EE2), by commercially sourced nZVI at pH 3, 5 and 7 under different oxygen conditions. Following the use of radical scavengers, an assessment of the EE2 transformation products shows that under nitrogen purging direct reduction of EE2 by nZVI occurred at all pHs. The radicals transforming EE2 in the absence of purging and upon air purging were similar for a given pH, but the dominant radical varied with pH. Upon air purging, EE2 was transformed by the same radical species as the non-purged system at the same respective pH, but the degradation rate was lower with more oxygen - most likely due to faster nZVI oxidation upon aeration, coupled with radical scavenging. The dominant radicals were OH at pH 3 and O2- at pH 5, and while neither radical was involved at pH 7, no conclusive inferences could be made on the actual radical involved at pH 7. Similar transformation products were observed without purging and upon air purging.
  3. Naidu J, Bartholomeusz D, Zobel J, Safaeian R, Hsieh W, Crouch B, et al.
    Endoscopy, 2021 Jan 13.
    PMID: 33440437 DOI: 10.1055/a-1353-0941
    AIM: This study evaluated clinical outcomes of combined chemotherapy and Endoscopic Ultrasound (EUS) guided intra-tumoral radioactive phosphorus-32 (32P OncoSil) implantation in locally advanced pancreatic adenocarcinoma (LAPC).

    METHODS: Consecutive patients with a new histological diagnosis of LAPC were recruited over 20 months. Baseline CT and 18FDG PET-CT were performed and repeated after 12 weeks to assess response to treatment. Following 2 cycles of conventional chemotherapy, patients underwent EUS-guided 32P OncoSil implantation followed by a further six cycles of chemotherapy.

    RESULTS: Twelve patients with LAPC (8M:4F; median age 69 years, IQR 61.5-73.3) completed the treatment. Technical success was 100% and no procedural complications were reported. At 12 weeks, there was a median reduction of 8.2cm3 (95% CI 4.95-10.85; p=0.003) in tumour volume, with minimal or no 18FDG uptake in 9 (75%) patients. Tumour downstaging was achieved in 6 (50%) patients, leading to successful resection in 5 (42%) patients, of which 4 patients (80%) had clear (R0) resection margins.

    CONCLUSIONS: EUS guided 32P OncoSil implantation is feasible and well tolerated and was associated with a 42% rate of surgical resection in our cohort. However, further evaluation in a larger randomized multicenter trial is warranted. (32P funded by OncoSil Medical Ltd, equipment and staff funded by the Royal Adelaide Hospital, ClinicalTrials.gov number, NCT03003078).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links