Displaying all 3 publications

Abstract:
Sort:
  1. Moyson S, Liew HJ, Diricx M, Sinha AK, Blust R, De Boeck G
    PMID: 25263807 DOI: 10.1016/j.cbpa.2014.09.017
    In the present study, the combined effects of hypoxia and nutritional status were examined in common carp (Cyprinus carpio), a relatively hypoxia tolerant cyprinid. Fish were either fed or fasted and were exposed to hypoxia (1.5-1.8mg O2L(-1)) at or slightly above their critical oxygen concentration during 1, 3 or 7days followed by a 7day recovery period. Ventilation initially increased during hypoxia, but fasted fish had lower ventilation frequencies than fed fish. In fed fish, ventilation returned to control levels during hypoxia, while in fasted fish recovery only occurred after reoxygenation. Due to this, C. carpio managed, at least in part, to maintain aerobic metabolism during hypoxia: muscle and plasma lactate levels remained relatively stable although they tended to be higher in fed fish (despite higher ventilation rates). However, during recovery, compensatory responses differed greatly between both feeding regimes: plasma lactate in fed fish increased with a simultaneous breakdown of liver glycogen indicating increased energy use, while fasted fish seemed to economize energy and recycle decreasing plasma lactate levels into increasing liver glycogen levels. Protein was used under both feeding regimes during hypoxia and subsequent recovery: protein levels reduced mainly in liver for fed fish and in muscle for fasted fish. Overall, nutritional status had a greater impact on energy reserves than the lack of oxygen with a lower hepatosomatic index and lower glycogen stores in fasted fish. Fasted fish transiently increased Na(+)/K(+)-ATPase activity under hypoxia, but in general ionoregulatory balance proved to be only slightly disturbed, showing that sufficient energy was left for ion regulation.
  2. Teo BW, Koh YY, Toh QC, Li J, Sinha AK, Shuter B, et al.
    Singapore Med J, 2014 Dec;55(12):656-9.
    PMID: 25630321
    INTRODUCTION: Clinical practice guidelines recommend using creatinine-based equations to estimate glomerular filtration rates (GFRs). While these equations were formulated for Caucasian-American populations and have adjustment coefficients for African-American populations, they are not validated for other ethnicities. The Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) recently developed a new equation that uses both creatinine and cystatin C. We aimed to assess the accuracy of this equation in estimating the GFRs of participants (healthy and with chronic kidney disease [CKD]) from a multiethnic Asian population.

    METHODS: Serum samples from the Asian Kidney Disease Study and the Singapore Kidney Function Study were used. GFR was measured using plasma clearance of 99mTc-DTPA. GFR was estimated using the CKD-EPI equations. The performance of GFR estimation equations were examined using median and interquartile range values, and the percentage difference from the measured GFR.

    RESULTS: The study comprised 335 participants (69.3% with CKD; 38.5% Chinese, 29.6% Malays, 23.6% Indians, 8.3% others), with a mean age of 53.5 ± 15.1 years. Mean standardised serum creatinine was 127 ± 86 μmol/L, while mean standardised serum cystatin C and mean measured GFR were 1.43 ± 0.74 mg/L and 67 ± 33 mL/min/1.73 m2, respectively. The creatinine-cystatin C CKD-EPI equation performed the best, with an estimated GFR of 67 ± 35 mL/min/1.73 m2.

    CONCLUSION: The new creatinine-cystatin C equation estimated GFR with little bias, and had increased precision and accuracy in our multiethnic Asian population. This two-biomarker equation may increase the accuracy of population studies on CKD, without the need to consider ethnicity.
  3. Bruce LJ, Wrong O, Toye AM, Young MT, Ogle G, Ismail Z, et al.
    Biochem. J., 2000 Aug 15;350 Pt 1:41-51.
    PMID: 10926824
    We describe three mutations of the red-cell anion exchangerband 3 (AE1, SLC4A1) gene associated with distalrenal tubular acidosis (dRTA) in families from Malaysia and Papua NewGuinea: Gly(701)-->Asp (G701D), Ala(858)-->Asp(A858D) and deletion of Val(850) (DeltaV850). The mutationsA858D and DeltaV850 are novel; all three mutations seem to berestricted to South-East Asian populations. South-East Asianovalocytosis (SAO), resulting from the band 3 deletion of residues400-408, occurred in many of the families but did not itselfresult in dRTA. Compound heterozygotes of each of the dRTA mutationswith SAO all had dRTA, evidence of haemolytic anaemia and abnormal red-cell properties. The A858D mutation showed dominant inheritance and therecessive DeltaV850 and G701D mutations showed a pseudo-dominantphenotype when the transport-inactive SAO allele was also present. Red-cell and Xenopus oocyte expression studies showed that theDeltaV850 and A858D mutant proteins have greatly decreased aniontransport when present as compound heterozygotes (DeltaV850/A858D,DeltaV850/SAO or A858D/SAO). Red cells with A858D/SAO had only 3% ofthe SO(4)(2-) efflux of normal cells, thelowest anion transport activity so far reported for human red cells. The results suggest dRTA might arise by a different mechanism for eachmutation. We confirm that the G701D mutant protein has an absoluterequirement for glycophorin A for movement to the cell surface. Wesuggest that the dominant A858D mutant protein is possibly mis-targetedto an inappropriate plasma membrane domain in the renal tubular cell,and that the recessive DeltaV850 mutation might give dRTA because ofits decreased anion transport activity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links