Prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA) are essential for the study of rare samples such as meteorites because of non-destructivity and relatively being free from contaminations. The objective of this research is to utilize PGA and INAA techniques for comparative study and apply them to meteorite analyses. In this study, 11 meteorite samples received from the Meteorite Working Group of NASA were analyzed. The Allende meteorite powder was included as quality control material. Results from PGA and INAA for Allende showed in good agreement with literature values, signifying the reliabilities of these two methods. Elements Al, Ca, Mg, Mn, Na and Ti were determined by both methods and their results are compared. Comparison of PGA and INAA data using linear regression analysis showed correlations coefficients r2 > 0.90 for Al, Ca, Mn and Ti, 0.85 for Mg, and 0.38 for Na. The PGA results for Na using 472 keV were less accurate due to the interference from the broad B peak. Therefore, Na results from INAA method are preferred. For other elements (Al, Ca, Mg, Mn and Ti), PGA and INAA results can be used as cross-reference for consistency. The PGA and INAA techniques have been applied to meteorite samples and results are comparable to literature values compiled from previously analyzed meteorites. In summary, both PGA and INAA methods give reasonably good agreement and are indispensable in the study of meteorites.
Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values.