Displaying all 2 publications

Abstract:
Sort:
  1. Siram K, Divakar S, Raghavan CV, Marslin G, Rahman H, Franklin G
    Colloids Surf B Biointerfaces, 2019 Feb 01;174:443-450.
    PMID: 30497005 DOI: 10.1016/j.colsurfb.2018.11.033
    The physico-chemical properties of lipids influencing the solubilisation of imatinib mesylate (IM) in lipid matrix were evaluated and a statistical model to predict the same has been derived in the present study. After experimental quantification of IM solubility in various lipids, Hansen Hildebrand's total solubility parameters were calculated in order to study the role of various forces connected to lipid-drug interaction. To develop a relationship between the various descriptors of the lipids and experimental solubility of IM in lipids (% w/w), quantitative structure-solubility relationship (QSSR) was used. To generate equations that can predict the solubility of IM in lipids (%w/w), multiple linear regression was used. Amongst the various lipids tested, glyceryl monostearate and behenic acid solubilised the highest (6.19 ± 0.22%) and lowest (0.01 ± 0.01%) amounts of IM respectively. Our results suggested that alkyl chain length, polarity of the lipids, index of cohesive interaction in solids, estimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution, estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution and solvent accessible surface area collectively play a significant role in solubilising IM in the lipids. The equation developed could predict the solubility of IM in lipids with good accuracy (R2pred = 0.912).
  2. Shiek Abdul Kadhar Mohamed Ebrahim HR, Chungath TT, Sridhar K, Siram K, Elumalai M, Ranganathan H, et al.
    Turk J Pharm Sci, 2021 Oct 28;18(5):565-573.
    PMID: 34719154 DOI: 10.4274/tjps.galenos.2021.91145
    OBJECTIVES: The present study aimed to develop and validate a discriminative dissolution method for tetrahydrocurcumin (THC), a Biopharmaceutical Classification System class II drug, by a simple ultraviolet (UV) spectrophotometric analysis. The final dissolution medium composition was selected based on the solubility and stability criteria of the drug.

    MATERIALS AND METHODS: As a prerequisite for this, the solubility of the drug was assessed in media of different pH (1.2-7.4), and surfactant concentrations of 0.5-1.5% (w/v) sodium lauryl sulfate (SLS) in water, and pH 7.4 phosphate buffer. The dissolved drug concentration in each medium was quantified by UV analysis at 280 nm wavelength.

    RESULTS: The drug solubility was found to be high at a pH of 1.2 and 7.4. The media with surfactant enhanced solubility of the drug by approximately 17-fold and exhibited better sink conditions. The discriminative power of the developed dissolution medium (i.e., 1% w/v SLS in pH 7.4) was determined by performing in vitro dissolution studies of the prepared THC tablets and comparing their release profiles using fit factors (f1 and f2). The results of the fit factor comparisons made between the dissolution profiles of THC tablets proved the discriminative ability of the medium. The validation of the developed dissolution method was performed by international guidelines and the method showed specificity, linearity, accuracy, and precision within the acceptable range.

    CONCLUSION: The proposed dissolution method was found to be adequate for the routine quality control analysis of THC, as there is no specified dissolution method for the drug in the pharmacopoeia.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links