Displaying all 2 publications

Abstract:
Sort:
  1. Nugraha AP, Ernawati DS, Narmada IB, Bramantoro T, Riawan W, Situmorang PC, et al.
    J Oral Biol Craniofac Res, 2023;13(6):781-790.
    PMID: 38028229 DOI: 10.1016/j.jobcr.2023.10.009
    BACKGROUND: The expression of receptor activator of Nuclear Factor Kappa Beta (RANK) and its ligand (RANKL), as well as osteoprotegrin (OPG), in the alveolar bone (AB), may improve bone remodeling during orthodontic tooth movement (OTM). It is hypothesized that hypoxia-preconditioned gingival mesenchymal stem cells (GMSC) may be more effective than normoxia-preconditioned GMSC in this regard. This study aims to investigate the expression of RANK, RANKL, and OPG in the compression and tension sides of AB after allogeneic administration of GMSC that were normoxia or hypoxia-preconditioned in rabbits (Oryctolagus cuniculus) undergoing OTM.

    METHODS: Twenty-four healthy young male rabbits were divided into two groups: T1, which underwent OTM and received normoxia-preconditioned GMSC, and T2, which underwent OTM and received hypoxia-preconditioned GMSC. A ligature wire was attached to the mandibular first molar and connected to a 50 g/mm2 closed coil spring, exerting force on the central incisor and left mandibular molar of the experimental animals. After 24 h of OTM, either normoxia- or hypoxia-preconditioned GMSC were injected into the gingiva of the samples in a single dose of 20 μl of phosphate-buffered saline (PBS). All samples were sacrificed on days 7, 14, and 28, and immunohistochemistry was performed to analyze the expression of RANK, RANKL, and OPG on the tension and compression sides.

    RESULTS: The expressions of RANK-RANKL-OPG in the alveolar bone of the compression and tension sides were significantly different during the 14-day period of OTM following allogeneic administration of GMSC that were normoxia or hypoxia-preconditioned (p 

  2. Prananda AT, Dalimunthe A, Harahap U, Simanjuntak Y, Peronika E, Karosekali NE, et al.
    Front Pharmacol, 2023;14:1288618.
    PMID: 37954853 DOI: 10.3389/fphar.2023.1288618
    Phyllanthus emblica Linn, a prominent member of the euphorbiaceae family, exhibits extensive distribution across a multitude of tropical and subtropical nations. Referred to as "Balakka" in Indonesia, this plant assumes various names across regions, such as "kimalaka," "balakka," "metengo," "malaka," and "kemloko" in North Sumatra, Ternate, Sundanese, and Java respectively. Phyllanthus emblica thrives in tropical locales like Indonesia, Malaysia, and Thailand, while also making its presence felt in subtropical regions like India, China, Uzbekistan, and Sri Lanka. The fruits of Balakka are enriched with bioactive constituents recognized for their wide-ranging benefits, including antioxidant, anti-aging, anti-cholesterol, anti-diabetic, immunomodulatory, antipyretic, analgesic, anti-inflammatory, chemoprotective, hepatoprotective, cardioprotective, antimutagenic, and antimicrobial properties. Comprising a spectrum of phenolic compounds (such as tannins, phenolic acids, and flavonoids), alkaloids, phytosterols, terpenoids, organic acids, amino acids, and vitamins, the bioactive components of Malacca fruit offer a diverse array of health-promoting attributes. In light of these insights, this review aims to comprehensively examine the pharmacological activities associated with P. emblica and delve into the intricate composition of its phytochemical constituents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links