Displaying all 3 publications

Abstract:
Sort:
  1. Yong SM, Smith PA, Kuo KN
    J Pediatr Orthop, 2007 Oct-Nov;27(7):814-20.
    PMID: 17878791
    The dorsal bunion deformity consists of the elevation of first metatarsal head, plantar flexion contracture at the first metatarsophalangeal joint, and dorsiflexion contracture of the tarsometatarsal joint. A reverse Jones procedure with transfer of the flexor hallucis longus to the metatarsal head has been an effective method in correcting this deformity.
  2. Ng BC, Smith PA, Nestler F, Timms D, Cohn WE, Lim E
    Ann Biomed Eng, 2017 03;45(3):567-579.
    PMID: 27543069 DOI: 10.1007/s10439-016-1706-3
    The successful clinical applicability of rotary left ventricular assist devices (LVADs) has led to research interest in devising a total artificial heart (TAH) using two rotary blood pumps (RBPs). The major challenge when using two separately controlled LVADs for TAH support is the difficulty in maintaining the balance between pulmonary and systemic blood flows. In this study, a starling-like controller (SLC) hybridized with an adaptive mechanism was developed for a dual rotary LVAD TAH. The incorporation of the adaptive mechanism was intended not only to minimize the risk of pulmonary congestion and atrial suction but also to match cardiac demand. A comparative assessment was performed between the proposed adaptive starling-like controller (A-SLC) and a conventional SLC as well as a constant speed controller. The performance of all controllers was evaluated by subjecting them to three simulated scenarios [rest, exercise, head up tilt (HUT)] using a mock circulation loop. The overall results showed that A-SLC was superior in matching pump flow to cardiac demand without causing hemodynamic instabilities. In contrast, improper flow regulation by the SLC resulted in pulmonary congestion during exercise. From resting supine to HUT, overpumping of the RBPs at fixed speed (FS) caused atrial suction, whereas implementation of SLC resulted in insufficient flow. The comparative study signified the potential of the proposed A-SLC for future TAH implementation particularly among outpatients, who are susceptible to variety of clinical scenarios.
  3. Ng BC, Kleinheyer M, Smith PA, Timms D, Cohn WE, Lim E
    PLoS One, 2018;13(4):e0195975.
    PMID: 29677212 DOI: 10.1371/journal.pone.0195975
    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9-15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links