Displaying all 2 publications

Abstract:
Sort:
  1. Asiri AM, Faidallah HM, Sobahi TR, Ng SW, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Nov 1;71(Pt 11):e4.
    PMID: 26617187 DOI: 10.1107/S2056989015019271
    In the paper by Asiri et al. [Acta Cryst. (2012), E68, o1154], the title and the chemical name of one of the reagents used in the synthesis are corrected.[This corrects the article DOI: 10.1107/S1600536812011579.].
  2. Ashour GR, Hussein MA, Sobahi TR, Alamry KA, Alqarni SA, Rafatullah M
    Polymers (Basel), 2021 Oct 16;13(20).
    PMID: 34685328 DOI: 10.3390/polym13203569
    In the current study, a variety of sulfonated polyethersulfone (SPES)-based ion-exchange membranes were prepared and utilized as efficient and selective solid adsorbents for the detection of Co(II) ions in aquatic solutions. SPES membranes were treated with a variety of cations at a 2:1 ratio overnight. The produced materials were assessed via XRD, FT-IR, SEM, and TGA analyses. The structure of these materials was confirmed by FT-IR and XRD, which also confirmed the inclusion of Na+, NH4+, and amberlite on the SPES surface successfully. TGA analysis showed that the thermal stabilities of these materials were enhanced, and the order of stability was NH4-SPES > SPES > Na-SPES > A-SPES. Furthermore, the efficiency of these modified membranes for the determination and adsorption of a variety of metal ions was also examined by the ICP-OES analytical technique. A-SPES expressed a powerful efficiency of adsorption, and it showed an efficient as well as quantitative adsorption at pH = 6. Moreover, A-SPES displayed the highest adsorption capacity of 90.13 mg/g for Co(II) through the Langmuir adsorption isotherm.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links