The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Due to the rising increase in infectious diseases brought on by bacteria and anti-bacterial drug resistance, antibacterial therapy has become difficult. The majority of first-line antibiotics are no longer effective against numerous germs, posing a new hazard to global human health in the 21st century. Through the drug-likeness screening, 184 usnic acid derivatives were selected from an in-house database of 340 usnic acid compounds. The pharmacokinetics (ADMET) prediction produced fifteen hit compounds, of which the lead molecule was subsequently obtained through a molecular docking investigation. The lead compounds, labelled compound-277 and compound-276, respectively, with the substantial binding affinity towards the enzymes were obtained through further docking simulation on the DNA gyrase and DNA topoisomerase proteins. Additionally, molecular dynamic (MD) simulation was performed for 300 ns on the lead compounds in order to confirm the stability of the docked complexes and the binding pose discovered during docking tests. Due to their intriguing pharmacological characteristics, these substances may be promising therapeutic candidate for anti-bacterial medication.Communicated by Ramaswamy H. Sarma.
Dengue fever is now one of the major global health concerns particularly for tropical and sub-tropical countries. However, there has been no FDA approved medication to treat dengue fever. Researchers are looking into DENV NS5 RdRp protease as a potential therapeutic target for discovering effective anti-dengue agents. The aim of this study to discover dengue virus inhibitor from a set of five compounds from Momordica charantia L. using a series of in-silico approaches. The compounds were docked into the active area of the DENV-2 NS5 RdRp protease to obtain the hit compounds. The successful compounds underwent additional testing for a study on drug-likeness similarity. Our study obtained Momordicoside-I as a lead compound which was further exposed to the Cytochrome P450 (CYP450) toxicity analysis to determine the toxicity based on docking scores and drug-likeness studies. Moreover, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties for the lead compound. Moreover, the lead compound was next subjected to molecular dynamic simulation for 200 ns in order to confirm the stability of the docked complex and the binding posture discovered during docking experiment. Overall, the lead compound has demonstrated good medication like qualities, non-toxicity, and significant binding affinity towards the DENV-2 RdRp enzyme.Communicated by Ramaswamy H. Sarma.
Dengue fever is a significant public health concern throughout the world, causing an estimated 500,000 hospitalizations and 20,000 deaths each year, despite the lack of effective therapies. The DENV-2 RdRp has been identified as a potential target for the development of new and effective dengue therapies. This research's primary objective was to discover an anti-DENV inhibitor using in silico ligand- and structure-based approaches. To begin, a ligand-based pharmacophore model was developed, and 130 distinct natural products (NPs) were screened. Docking of the pharmacophore-matched compounds were performed to the active site of DENV-2 RdRp protease . Eleven compounds were identified as potential DENV-2 RdRp inhibitors based on docking energy and binding interactions. ADMET and drug-likeness were done to predict their pharmacologic, pharmacokinetic, and drug-likeproperties . Compounds ranked highest in terms of pharmacokinetics and drug-like appearances were then subjected to additional toxicity testing to determine the leading compound. Additionally, MD simulation of the lead compound was performed to confirm the docked complex's stability and the binding site determined by docking. As a result, the lead compound (compound-108) demonstrated an excellent match to the pharmacophore, a strong binding contact and affinity for the RdRp enzyme, favourable pharmacokinetics, and drug-like characteristics. In summary, the lead compound identified in this study could be a possible DENV-2 RdRp inhibitor that may be further studied on in vitro and in vivo models to develop as a drug candidate.Communicated by Ramaswamy H. Sarma.