Displaying all 4 publications

Abstract:
Sort:
  1. Niedballa J, Sollmann R, bin Mohamed A, Bender J, Wilting A
    Sci Rep, 2015;5:17041.
    PMID: 26596779 DOI: 10.1038/srep17041
    In species-habitat association studies, both the type and spatial scale of habitat covariates need to match the ecology of the focal species. We assessed the potential of high-resolution satellite imagery for generating habitat covariates using camera-trapping data from Sabah, Malaysian Borneo, within an occupancy framework. We tested the predictive power of covariates generated from satellite imagery at different resolutions and extents (focal patch sizes, 10-500 m around sample points) on estimates of occupancy patterns of six small to medium sized mammal species/species groups. High-resolution land cover information had considerably more model support for small, patchily distributed habitat features, whereas it had no advantage for large, homogeneous habitat features. A comparison of different focal patch sizes including remote sensing data and an in-situ measure showed that patches with a 50-m radius had most support for the target species. Thus, high-resolution satellite imagery proved to be particularly useful in heterogeneous landscapes, and can be used as a surrogate for certain in-situ measures, reducing field effort in logistically challenging environments. Additionally, remote sensed data provide more flexibility in defining appropriate spatial scales, which we show to impact estimates of wildlife-habitat associations.
  2. Tilker A, Abrams JF, Mohamed A, Nguyen A, Wong ST, Sollmann R, et al.
    Commun Biol, 2019;2:396.
    PMID: 31701025 DOI: 10.1038/s42003-019-0640-y
    Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.
  3. Wong ST, Guharajan R, Petrus A, Jubili J, Lietz R, Abrams JF, et al.
    Ecol Evol, 2022 Sep;12(9):e9337.
    PMID: 36188514 DOI: 10.1002/ece3.9337
    To offset the declining timber supply by shifting towards more sustainable forestry practices, industrial tree plantations are expanding in tropical production forests. The conversion of natural forests to tree plantation is generally associated with loss of biodiversity and shifts towards more generalist and disturbance tolerant communities, but effects of mixed-landuse landscapes integrating natural and plantation forests remain little understood. Using camera traps, we surveyed the medium-to-large bodied terrestrial wildlife community across two mixed-landuse forest management areas in Sarawak, Malaysia Borneo which include areas dedicated to logging of natural forests and adjacent planted Acacia forests. We analyzed data from a 25-wildlife species community using a Bayesian community occupancy model to assess species richness and species-specific occurrence responses to Acacia plantations at a broad scale, and to remote-sensed local habitat conditions within the different forest landuse types. All species were estimated to occur in both landuse types, but species-level percent area occupied and predicted average local species richness were slightly higher in the natural forest management areas compared to licensed planted forest management areas. Similarly, occupancy-based species diversity profiles and defaunation indices for both a full community and only threatened and endemic species suggested the diversity and occurrence were slightly higher in the natural forest management areas. At the local scale, forest quality was the most prominent predictor of species occurrence. These associations with forest quality varied among species but were predominantly positive. Our results highlight the ability of a mixed-landuse landscape with small-scale Acacia plantations embedded in natural forests to retain terrestrial wildlife communities while providing an alternate source of timber. Nonetheless, there was a tendency towards reduced biodiversity in planted forests, which would likely be more pronounced in plantations that are larger or embedded in a less natural matrix.
  4. Ancrenaz M, Sollmann R, Meijaard E, Hearn AJ, Ross J, Samejima H, et al.
    Sci Rep, 2014;4:4024.
    PMID: 24526001 DOI: 10.1038/srep04024
    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links