Displaying all 2 publications

Abstract:
Sort:
  1. Taufiq A, Yuliantika D, Sunaryono S, Saputro RE, Hidayat N, Mufti N, et al.
    An Acad Bras Cienc, 2021;93(4):e20200774.
    PMID: 34705939 DOI: 10.1590/0001-3765202120200774
    This study performs natural sand-based synthesis using the sonochemical route for preparing Zn-doped magnetite nanoparticles. The nanoparticles were dispersed in water as a carrier liquid to form Zn-doped magnetite aqueous ferrofluids. Structural data analysis indicated that the Zn-doped magnetite nanoparticles formed a nanosized spinel structure. With an increase in the Zn content, the lattice parameters of the Zn-doped magnetite nanoparticles tended to increase because Zn2+ has a larger ionic radius than those of Fe3+ and Fe2+. The existence of Zn-O and Fe-O functional groups in tetrahedral and octahedral sites were observed in the wavenumber range of 400-700 cm-1. The primary particles of the Zn-doped magnetite ferrofluids tended to construct chain-like structures with fractal dimensions of 1.2-1.9. The gas-like compression (GMC) plays as a better model than the Langevin theory to fit the saturation magnetization of the ferrofluids. The ferrofluids exhibited a superparamagnetic character, with their magnetization was contributed by aggregation. The Zn-doped magnetite ferrofluids exhibited excellent antibacterial activity against gram-positive and negative bacteria. It is suggested that the presence of the negatively charged surface and the nanoparticle size may contribute to the high antibacterial activity of Zn-doped magnetite ferrofluids and making them potentially suitable for advanced biomedical.
  2. Ihsan NSMN, Abdul Sani SF, Looi LM, Pathmanathan D, Cheah PL, Chiew SF, et al.
    Biophys Chem, 2025 Jan;316:107349.
    PMID: 39546937 DOI: 10.1016/j.bpc.2024.107349
    Amyloid diseases are characterized by the accumulation of misfolded protein aggregates in human tissues, pose significant challenges for both diagnosis and treatment. Protein aggregations known as amyloids are linked to several neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, and systemic amyloidosis. The key goal of this research is to employ Small-Angle X-ray Scattering (SAXS) to examine the supramolecular structures of amyloid aggregates in human tissues. We present the structural analysis of amyloid using SAXS, which is employed directly to analyze thin tissue samples without damaging the tissues. This technique provides size and shape information of fibrils, which can be used to generate low-resolution 2D models. The present study investigates the structural changes in amyloid fibril axial d-spacing and scattering intensity in different human tissues, including kidney, heart, thyroid, and others, while also accounting for the presence of triglycerides in these tissues. Tissue structural components were examined at momentum transfer values between q = 0.2 nm-1 and 1.5 nm-1. The d-spacing is a critical parameter in SAXS that provides information about the periodic distances between structures within a sample. From the supramolecular SAXS patterns, the axial d-spacing of fibrils in amyloid tissues is prominent and exists within the 3rd to 10th order, compared to that of healthy tissues which do not have notable peak orders. The axial period of fibrils in amyloid tissues is within the scattering vector range 57.40-64.64 nm-1 while in normal tissues the range is between 60.68 and 61.41 nm-1, which is 3.0 nm-1 smaller than amyloid-containing tissues. Differences in d-spacing are often correlate with distinct pathological mechanisms or stages of disease progression. The application of SAXS to investigate amyloid structures in human tissues has enormous potential to further knowledge of amyloid disorders. This work will open the path for novel diagnostic instruments and therapeutic strategies meant to reduce the burden of amyloid-related diseases by offering a thorough structural examination of amyloid aggregates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links