Two independent mol-ecules comprise the asymmetric unit in the title benzoxatellurole compound, C12H17ClOTe. The mol-ecules, with the same chirality at the methine C atom, are connected into a loosely associated dimer by Te⋯O inter-actions, leading to a {⋯Te-O}2 core. The resultant C2ClO2 donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Inter-estingly, the Te(IV) atoms exhibit opposite chirality. The major difference between the independent mol-ecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one mol-ecule and is twisted about the O-C(methine) bond in the other. No directional inter-molecular inter-actions are noted in the mol-ecular packing beyond the aforementioned Te⋯O secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of H⋯H contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent mol-ecules in terms of both H⋯H and H⋯Cl/Cl⋯H contacts.
The mol-ecule in the title compound, C15H12N4O2, has a twisted L-shape with the dihedral angle between the aromatic rings of the N-bound benzene and C-bound benzyl groups being 70.60 (9)°. The nitro group is co-planar with the benzene ring to which it is connected [C-C-N-O torsion angle = 0.4 (3)°]. The three-dimensional packing is stabilized by a combination of methyl-ene-C-H⋯O(nitro), methyl-ene-C-H⋯π(phen-yl), phenyl-C-H⋯π(triazol-yl) and nitro-O⋯π(nitro-benzene) inter-actions, along with weak π(triazol-yl)-π(nitrobenzene) contacts [inter-centroid distance = 3.8386 (10) Å]. The importance of the specified inter-molecular contacts has been verified by an analysis of the calculated Hirshfeld surface.