Displaying all 4 publications

Abstract:
Sort:
  1. Acharya UR, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS
    J Clin Ultrasound, 2015 Jun;43(5):302-11.
    PMID: 24909942 DOI: 10.1002/jcu.22183
    To test a computer-aided diagnostic method for differentiating symptomatic from asymptomatic carotid B-mode ultrasonographic images.
  2. Acharya UR, Sree SV, Muthu Rama Krishnan M, Krishnananda N, Ranjan S, Umesh P, et al.
    Comput Methods Programs Biomed, 2013 Dec;112(3):624-32.
    PMID: 23958645 DOI: 10.1016/j.cmpb.2013.07.012
    Coronary Artery Disease (CAD), caused by the buildup of plaque on the inside of the coronary arteries, has a high mortality rate. To efficiently detect this condition from echocardiography images, with lesser inter-observer variability and visual interpretation errors, computer based data mining techniques may be exploited. We have developed and presented one such technique in this paper for the classification of normal and CAD affected cases. A multitude of grayscale features (fractal dimension, entropies based on the higher order spectra, features based on image texture and local binary patterns, and wavelet based features) were extracted from echocardiography images belonging to a huge database of 400 normal cases and 400 CAD patients. Only the features that had good discriminating capability were selected using t-test. Several combinations of the resultant significant features were used to evaluate many supervised classifiers to find the combination that presents a good accuracy. We observed that the Gaussian Mixture Model (GMM) classifier trained with a feature subset made up of nine significant features presented the highest accuracy, sensitivity, specificity, and positive predictive value of 100%. We have also developed a novel, highly discriminative HeartIndex, which is a single number that is calculated from the combination of the features, in order to objectively classify the images from either of the two classes. Such an index allows for an easier implementation of the technique for automated CAD detection in the computers in hospitals and clinics.
  3. Acharya UR, Molinari F, Sree SV, Swapna G, Saba L, Guerriero S, et al.
    Technol Cancer Res Treat, 2015 Jun;14(3):251-61.
    PMID: 25230716 DOI: 10.1177/1533034614547445
    Ovarian cancer is the most common cause of death among gynecological malignancies. We discuss different types of clinical and nonclinical features that are used to study and analyze the differences between benign and malignant ovarian tumors. Computer-aided diagnostic (CAD) systems of high accuracy are being developed as an initial test for ovarian tumor classification instead of biopsy, which is the current gold standard diagnostic test. We also discuss different aspects of developing a reliable CAD system for the automated classification of ovarian cancer into benign and malignant types. A brief description of the commonly used classifiers in ultrasound-based CAD systems is also given.
  4. Koh JEW, Acharya UR, Hagiwara Y, Raghavendra U, Tan JH, Sree SV, et al.
    Comput Biol Med, 2017 05 01;84:89-97.
    PMID: 28351716 DOI: 10.1016/j.compbiomed.2017.03.008
    Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links