Displaying all 2 publications

Abstract:
Sort:
  1. Makhtar S, Senik M, Stevenson CW, Mason R, Halliday D
    J Neural Eng, 2020 Feb 26.
    PMID: 32103827 DOI: 10.1088/1741-2552/ab7a50
    OBJECTIVE: Graphical networks and network metrics are widely used to understand and characterise brain networks and brain function. These methods can be applied to a range of electrophysiological data including electroencephalography, local field potential and single unit recordings. Functional networks are often constructed using pair-wise correlation between variables. The objective of this study is to demonstrate that functional networks can be more accurately estimated using partial correlation than with pair-wise correlation.

    APPROACH: We compared network metrics derived from unconditional and conditional graphical networks, obtained using coherence and multivariate partial coherence (MVPC), respectively. Graphical networks were constructed using coherence and MVPC estimates, and binary and weighted network metrics derived from these: node degree, path length, clustering coefficients and small-world index.

    MAIN RESULTS: Network metrics were applied to simulated and experimental single unit spike train data. Simulated data used a 10x10 grid of simulated cortical neurons with centre-surround connectivity. Conditional network metrics gave a more accurate representation of the known connectivity: Numbers of excitatory connections had range 3-11, unconditional binary node degree had range 6-80, conditional node degree had range 2-13. Experimental data used multi-electrode array recording with 19 single-units from left and right hippocampal brain areas in a rat model for epilepsy. Conditional network analysis showed similar trends to simulated data, with lower binary node degree and longer binary path lengths compared to unconditional networks.

    SIGNIFICANCE: We conclude that conditional networks, where common dependencies are removed through partial coherence analysis, give a more accurate representation of the interactions in a graphical network model. These results have important implications for graphical network analyses of brain networks and suggest that functional networks should be derived using partial correlation, based on MVPC estimates, as opposed to the common approach of pair-wise correlation.

  2. Fakae LB, Harun MSR, Ting DSJ, Dua HS, Cave GWV, Zhu XQ, et al.
    Acta Trop, 2023 Jan;237:106729.
    PMID: 36280206 DOI: 10.1016/j.actatropica.2022.106729
    We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 μM and 200 μM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links