Displaying all 3 publications

Abstract:
Sort:
  1. Yassi N, Yogendrakumar V, Churilov L, Meretoja A, Wu T, Campbell BCV, et al.
    Neurology, 2024 Dec 24;103(12):e210104.
    PMID: 39586046 DOI: 10.1212/WNL.0000000000210104
    BACKGROUND AND OBJECTIVES: The antifibrinolytic agent tranexamic acid has been tested in intracerebral hemorrhage trials with overall neutral results. Ongoing contrast extravasation on CT angiography (spot sign) can identify individuals with ongoing bleeding who may benefit from anti-fibrinolytic therapy. We aimed to investigate the effect of tranexamic acid on hematoma growth in patients with spot signs treated within 4.5 hours of onset.

    METHODS: We conducted a systematic review and individual patient meta-analysis, which we report according to the Preferred Reporting Items for Systematic Review and Meta-analyses of Individual Participant Data guidelines. PubMed and Embase were searched from inception to May 29, 2023, using the terms ((stroke) AND (randomised OR randomized) AND (tranexamic acid) AND (haemorrhage OR hemorrhage)). We included randomized trials comparing tranexamic acid with placebo in participants with primary intracerebral hemorrhage who had a spot sign and who had follow-up imaging within the required timeframe. Individual patient data were provided by each study and were integrated by the coordinating center. Data were pooled using a random-effects model. The primary endpoint was hematoma growth within 24 hours, defined as ≥33% relative or ≥6 mL absolute hematoma expansion compared with baseline, analyzed using mixed-effects-modified Poisson regression with robust standard errors, adjusted for baseline hematoma volume. Safety outcomes were mortality and major thromboembolic events within 90 days.

    RESULTS: Of 197 studies identified, 3 were eligible, contributing 162 participants for the primary analysis (60 female and 102 male). Hematoma growth occurred in 36 of 74 (49%) participants treated with tranexamic acid, compared with 48 of 88 (55%) participants treated with placebo (adjusted risk ratio 0.86, 95% CI 0.84-0.89, p < 0.001). Adjusted median absolute hematoma growth was 1.60 mL (95% CI 0.77-2.43) lower with tranexamic acid vs placebo. No differences in functional outcome or safety were observed.

    DISCUSSION: Tranexamic acid modestly reduced hematoma growth in patients with CT angiography spot signs treated within 4.5 hours of onset. Given the trials in the meta-analysis were individually neutral, these results require further validation before clinical application.

  2. Nguyen TN, Qureshi MM, Klein P, Yamagami H, Abdalkader M, Mikulik R, et al.
    J Stroke, 2022 May;24(2):256-265.
    PMID: 35677980 DOI: 10.5853/jos.2022.00752
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year.

    METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020).

    RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths.

    CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.

  3. Nguyen TN, Qureshi MM, Klein P, Yamagami H, Mikulik R, Czlonkowska A, et al.
    Neurology, 2023 Jan 24;100(4):e408-e421.
    PMID: 36257718 DOI: 10.1212/WNL.0000000000201426
    BACKGROUND AND OBJECTIVES: Declines in stroke admission, IV thrombolysis (IVT), and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the effect of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), IVT, and mechanical thrombectomy over a 1-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).

    METHODS: We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, IVT treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.

    RESULTS: There were 148,895 stroke admissions in the 1 year immediately before compared with 138,453 admissions during the 1-year pandemic, representing a 7% decline (95% CI [95% CI 7.1-6.9]; p < 0.0001). ICH volumes declined from 29,585 to 28,156 (4.8% [5.1-4.6]; p < 0.0001) and IVT volume from 24,584 to 23,077 (6.1% [6.4-5.8]; p < 0.0001). Larger declines were observed at high-volume compared with low-volume centers (all p < 0.0001). There was no significant change in mechanical thrombectomy volumes (0.7% [0.6-0.9]; p = 0.49). Stroke was diagnosed in 1.3% [1.31-1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82-2.97], 5,656/195,539) of all stroke hospitalizations.

    DISCUSSION: There was a global decline and shift to lower-volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared with the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.

    TRIAL REGISTRATION INFORMATION: This study is registered under NCT04934020.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links