Displaying all 2 publications

Abstract:
Sort:
  1. Okolo C, Rafique R, Iqbal SS, Subhani T, Saharudin MS, Bhat BR, et al.
    Molecules, 2019 Sep 01;24(17).
    PMID: 31480573 DOI: 10.3390/molecules24173176
    A novel tweakable nanocomposite was prepared by spark plasma sintering followed by systematic oxidation of carbon nanotube (CNT) molecules to produce alumina/carbon nanotube nanocomposites with surface porosities. The mechanical properties (flexural strength and fracture toughness), surface area, and electrical conductivities were characterized and compared. The nanocomposites were extensively analyzed by field emission scanning electron microscopy (FE-SEM) for 2D qualitative surface morphological analysis. Adding CNTs in ceramic matrices and then systematically oxidizing them, without substantial reduction in densification, induces significant capability to achieve desirable/application oriented balance between mechanical, electrical, and catalytic properties of these ceramic nanocomposites. This novel strategy, upon further development, opens new level of opportunities for real-world/industrial applications of these relatively novel engineering materials.
  2. Farooq U, Ali MU, Hussain SJ, Ahmad MS, Zafar A, Ghafoor U, et al.
    Polymers (Basel), 2021 Jun 22;13(13).
    PMID: 34206302 DOI: 10.3390/polym13132035
    The influence of nanodiamonds (NDs) on the thermal and ablative performance of carbon-fiber-reinforced-epoxy matrix compositeswas explored. The ablative response of the composites with 0.2 wt% and 0.4 wt% NDs was studied through pre-and post-burning morphologies of the composite surfaces by evaluation of temperature profiles, weight loss, and erosion rate. Composites containing 0.2 wt% NDs displayed a 10.5% rise in erosion resistance, whereas composites containing 0.4 wt% NDs exhibited a 12.6% enhancement in erosion resistance compared to neat carbon fiber-epoxy composites. A similar trend was witnessed in the thermal conductivity of composites. Incorporation of composites with 0.2 wt% and 0.4 wt% NDs brought about an increase of 37 wt% and 52 wt%, respectively. The current study is valuable for the employment of NDs in carbon fiber composite applications where improved erosion resistance is necessary.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links