Displaying all 2 publications

Abstract:
Sort:
  1. Sudo M, Yamaguchi Y, Späth PJ, Matsumoto-Morita K, Ong BK, Shahrizaila N, et al.
    PLoS One, 2014;9(9):e107772.
    PMID: 25259950 DOI: 10.1371/journal.pone.0107772
    Intravenous immunoglobulin (IVIG) is the first line treatment for Guillain-Barré syndrome and multifocal motor neuropathy, which are caused by anti-ganglioside antibody-mediated complement-dependent cytotoxicity. IVIG has many potential mechanisms of action, and sialylation of the IgG Fc portion reportedly has an anti-inflammatory effect in antibody-dependent cell-mediated cytotoxicity models. We investigated the effects of different IVIG glycoforms on the inhibition of antibody-mediated complement-dependent cytotoxicity. Deglycosylated, degalactosylated, galactosylated and sialylated IgG were prepared from IVIG following treatment with glycosidases and glycosyltransferases. Sera from patients with Guillain-Barré syndrome, Miller Fisher syndrome and multifocal motor neuropathy associated with anti-ganglioside antibodies were used. Inhibition of complement deposition subsequent to IgG or IgM autoantibody binding to ganglioside, GM1 or GQ1b was assessed on microtiter plates. Sialylated and galactosylated IVIGs more effectively inhibited C3 deposition than original IVIG or enzyme-treated IVIGs (agalactosylated and deglycosylated IVIGs). Therefore, sialylated and galactosylated IVIGs may be more effective than conventional IVIG in the treatment of complement-dependent autoimmune diseases.
  2. Ando S, Fujimoto T, Sudo M, Watanuki S, Hiraoka K, Takeda K, et al.
    J Physiol, 2024 Feb;602(3):461-484.
    PMID: 38165254 DOI: 10.1113/JP285173
    Acute cardiovascular physical exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Here, using positron emission tomography (PET) with [11 C]raclopride, in a multi-experiment study we investigated whether acute exercise releases endogenous dopamine (DA) in the brain. We hypothesized that acute exercise augments the brain DA system, and that RT improvement is correlated with this endogenous DA release. The PET study (Experiment 1: n = 16) demonstrated that acute physical exercise released endogenous DA, and that endogenous DA release was correlated with improvements in RT of the Go/No-Go task. Thereafter, using two electrical muscle stimulation (EMS) studies (Experiments 2 and 3: n = 18 and 22 respectively), we investigated what triggers RT improvement. The EMS studies indicated that EMS with moderate arm cranking improved RT, but RT was not improved following EMS alone or EMS combined with no load arm cranking. The novel mechanistic findings from these experiments are: (1) endogenous DA appears to be an important neuromodulator for RT improvement and (2) RT is only altered when exercise is associated with central signals from higher brain centres. Our findings explain how humans rapidly alter their behaviour using neuromodulatory systems and have significant implications for promotion of cognitive health. KEY POINTS: Acute cardiovascular exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Using the neurochemical specificity of [11 C]raclopride positron emission tomography, we demonstrated that acute supine cycling released endogenous dopamine (DA), and that this release was correlated with improved RT. Additional electrical muscle stimulation studies demonstrated that peripherally driven muscle contractions (i.e. exercise) were insufficient to improve RT. The current study suggests that endogenous DA is an important neuromodulator for RT improvement, and that RT is only altered when exercise is associated with central signals from higher brain centres.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links